Impact of the Covalent Interaction Between Ferulic Acid and Ovalbumin on the Structure and Functional Properties of the Protein

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Bruno Sérgio Toledo Barbosa, Sanclayver Corrêa Araújo, Yraima Cordeiro, Edwin Elard Garcia-Rojas
{"title":"Impact of the Covalent Interaction Between Ferulic Acid and Ovalbumin on the Structure and Functional Properties of the Protein","authors":"Bruno Sérgio Toledo Barbosa,&nbsp;Sanclayver Corrêa Araújo,&nbsp;Yraima Cordeiro,&nbsp;Edwin Elard Garcia-Rojas","doi":"10.1007/s11483-024-09919-6","DOIUrl":null,"url":null,"abstract":"<div><p>Protein-polyphenol conjugates, formed through chemical modifications, can alter the structure of proteins, thereby enhancing their functional properties and enabling the development of novel ingredients for diverse applications. Despite this potential, the covalent conjugation of ovalbumin (OVA) with ferulic acid (FA) and the determination of their optimal binding ratios have not been previously studied. To address this gap, we investigated the formation of OVA-FA conjugates using an alkaline method and identified an optimal ratio of 0.9 g of FA per g of OVA. The resulting conjugates displayed substantial alterations in the secondary and tertiary structures of OVA, increased hydrophobicity, and a higher molar mass. These structural modifications significantly improved the solubility, emulsification capacity, and foam-forming ability of OVA, while also enhancing its antioxidant activity compared to the unmodified protein. These findings demonstrate the potential of OVA-FA conjugates as multifunctional emulsifiers with antioxidant properties, broadening their applications in the food and nutraceutical industries.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09919-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-polyphenol conjugates, formed through chemical modifications, can alter the structure of proteins, thereby enhancing their functional properties and enabling the development of novel ingredients for diverse applications. Despite this potential, the covalent conjugation of ovalbumin (OVA) with ferulic acid (FA) and the determination of their optimal binding ratios have not been previously studied. To address this gap, we investigated the formation of OVA-FA conjugates using an alkaline method and identified an optimal ratio of 0.9 g of FA per g of OVA. The resulting conjugates displayed substantial alterations in the secondary and tertiary structures of OVA, increased hydrophobicity, and a higher molar mass. These structural modifications significantly improved the solubility, emulsification capacity, and foam-forming ability of OVA, while also enhancing its antioxidant activity compared to the unmodified protein. These findings demonstrate the potential of OVA-FA conjugates as multifunctional emulsifiers with antioxidant properties, broadening their applications in the food and nutraceutical industries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信