Multifunctional Hydrogel based on Chlorella Protein: Structure, Performance and Application in Cherry Preservation

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Cailing Yu, Yanan Zhao, Xinyu Zu, Yan Liang, Hua Wang
{"title":"Multifunctional Hydrogel based on Chlorella Protein: Structure, Performance and Application in Cherry Preservation","authors":"Cailing Yu,&nbsp;Yanan Zhao,&nbsp;Xinyu Zu,&nbsp;Yan Liang,&nbsp;Hua Wang","doi":"10.1007/s11483-024-09920-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel multifunctional hydrogel synthesized by crosslinking <i>Chlorella</i> protein using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide, aimed at extending the shelf life of perishable fruits like cherries. Structural, rheological, and scanning electron microscopy analyses revealed that <i>Chlorella</i> protein hydrogels (CPH) possess excellent solid-like properties and a stable porous structure. The water-holding capacity improved significantly from 67.11 ± 0.72% to 96.53 ± 0.61% with increasing CP concentration (10–22.5%, w/v). Additionally, CPH decomposition temperatures were ~ 150 °C (5% weight loss), demonstrating good thermal stability. Due to the ionization of -COOH and -NH<sub>2</sub> groups, the CPH showed excellent pH sensitivity, with low dissolution rates in acidic environments (64.97%) and significantly higher rates in alkaline environments (448.50%). Furthermore, the CPH inhibited the penetration of <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>, and exhibited good free radical scavenging abilities against DPPH (74.50%) and ABTS<sup>•+</sup> (97.92%). In cherries preservation tests, CPH extended preservation time to 15 days compared to 5 days in the control group, effectively inhibiting decay, suggesting CPH is a promising choice for multifunctional fruit preservation.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09920-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel multifunctional hydrogel synthesized by crosslinking Chlorella protein using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide, aimed at extending the shelf life of perishable fruits like cherries. Structural, rheological, and scanning electron microscopy analyses revealed that Chlorella protein hydrogels (CPH) possess excellent solid-like properties and a stable porous structure. The water-holding capacity improved significantly from 67.11 ± 0.72% to 96.53 ± 0.61% with increasing CP concentration (10–22.5%, w/v). Additionally, CPH decomposition temperatures were ~ 150 °C (5% weight loss), demonstrating good thermal stability. Due to the ionization of -COOH and -NH2 groups, the CPH showed excellent pH sensitivity, with low dissolution rates in acidic environments (64.97%) and significantly higher rates in alkaline environments (448.50%). Furthermore, the CPH inhibited the penetration of Staphylococcus aureus and Escherichia coli, and exhibited good free radical scavenging abilities against DPPH (74.50%) and ABTS•+ (97.92%). In cherries preservation tests, CPH extended preservation time to 15 days compared to 5 days in the control group, effectively inhibiting decay, suggesting CPH is a promising choice for multifunctional fruit preservation.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信