MacGen: A Web Server for Structure-Based Macrocycle Design

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Zhihan Zhang, Dongliang Ke, Chengshan Jin, Weiyu Zhou, Xiaolin Pan, Yueqing Zhang, Xingyu Wang, Xudong Xiao and Changge Ji*, 
{"title":"MacGen: A Web Server for Structure-Based Macrocycle Design","authors":"Zhihan Zhang,&nbsp;Dongliang Ke,&nbsp;Chengshan Jin,&nbsp;Weiyu Zhou,&nbsp;Xiaolin Pan,&nbsp;Yueqing Zhang,&nbsp;Xingyu Wang,&nbsp;Xudong Xiao and Changge Ji*,&nbsp;","doi":"10.1021/acs.jcim.4c0157610.1021/acs.jcim.4c01576","DOIUrl":null,"url":null,"abstract":"<p >Macrocyclization is a critical strategy in rational drug design that can offer several advantages, such as enhancing binding affinity, increasing selectivity, and improving cellular permeability. Herein, we introduce MacGen, a web tool devised for structure-based macrocycle design. MacGen identifies exit vector pairs within a ligand that are suitable for cyclization and finds 3D linkers that can align with the geometric arrangement of these pairs to form macrocycles. To aid in the fast acquisition of appropriate linkers, we have built an indexed 3D linker database that includes linkers of various lengths and categories. MacGen provides comprehensive configurable parameters that enable users to obtain preferred linkers, meeting unique requirements in practical ligand design scenarios. We hope MacGen will serve as a handy tool that can rapidly explore potential macrocycle space. The MacGen server is freely accessible at https://macgen.xundrug.cn.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 24","pages":"9048–9055 9048–9055"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Macrocyclization is a critical strategy in rational drug design that can offer several advantages, such as enhancing binding affinity, increasing selectivity, and improving cellular permeability. Herein, we introduce MacGen, a web tool devised for structure-based macrocycle design. MacGen identifies exit vector pairs within a ligand that are suitable for cyclization and finds 3D linkers that can align with the geometric arrangement of these pairs to form macrocycles. To aid in the fast acquisition of appropriate linkers, we have built an indexed 3D linker database that includes linkers of various lengths and categories. MacGen provides comprehensive configurable parameters that enable users to obtain preferred linkers, meeting unique requirements in practical ligand design scenarios. We hope MacGen will serve as a handy tool that can rapidly explore potential macrocycle space. The MacGen server is freely accessible at https://macgen.xundrug.cn.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信