Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Negin Forouzesh, Fatemeh Ghafouri, Igor S. Tolokh and Alexey V. Onufriev*, 
{"title":"Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent","authors":"Negin Forouzesh,&nbsp;Fatemeh Ghafouri,&nbsp;Igor S. Tolokh and Alexey V. Onufriev*,&nbsp;","doi":"10.1021/acs.jcim.4c0119010.1021/acs.jcim.4c01190","DOIUrl":null,"url":null,"abstract":"<p >Accuracy of binding free energy calculations utilizing implicit solvent models is critically affected by parameters of the underlying dielectric boundary, specifically, the atomic and water probe radii. Here, a multidimensional optimization pipeline is used to find optimal atomic radii, specifically for binding calculations in the implicit solvent. To reduce overfitting, the optimization target includes separate, weighted contributions from both binding and hydration free energies. The resulting five-parameter radii set, OPT_BIND5D, is evaluated against experiment for binding free energies of 20 host–guest (H–G) systems, unrelated to the types of structures used in the training. The resulting accuracy for this H–G test set (root mean square error of 2.03 kcal/mol, mean signed error of −0.13 kcal/mol, mean absolute error of 1.68 kcal/mol, and Pearson’s correlation of <i>r</i> = 0.79 with the experimental values) is on par with what can be expected from the fixed charge explicit solvent models. Best agreement with the experiment is achieved when the implicit salt concentration is set equal or close to the experimental conditions.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 24","pages":"9433–9448 9433–9448"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01190","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accuracy of binding free energy calculations utilizing implicit solvent models is critically affected by parameters of the underlying dielectric boundary, specifically, the atomic and water probe radii. Here, a multidimensional optimization pipeline is used to find optimal atomic radii, specifically for binding calculations in the implicit solvent. To reduce overfitting, the optimization target includes separate, weighted contributions from both binding and hydration free energies. The resulting five-parameter radii set, OPT_BIND5D, is evaluated against experiment for binding free energies of 20 host–guest (H–G) systems, unrelated to the types of structures used in the training. The resulting accuracy for this H–G test set (root mean square error of 2.03 kcal/mol, mean signed error of −0.13 kcal/mol, mean absolute error of 1.68 kcal/mol, and Pearson’s correlation of r = 0.79 with the experimental values) is on par with what can be expected from the fixed charge explicit solvent models. Best agreement with the experiment is achieved when the implicit salt concentration is set equal or close to the experimental conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信