4,4′,4″-Nitrilotribenzoic Acid/Graphitic Carbon Nitride Type II Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution from Water Splitting

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tania Tofaz, Xiao-Jie Lu, Shuai Chen, Jing-Han Li, Hao-Yang Ding, Ikram Ullah, Sadia Habib, Ghulam Murtaza and An-Wu Xu*, 
{"title":"4,4′,4″-Nitrilotribenzoic Acid/Graphitic Carbon Nitride Type II Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution from Water Splitting","authors":"Tania Tofaz,&nbsp;Xiao-Jie Lu,&nbsp;Shuai Chen,&nbsp;Jing-Han Li,&nbsp;Hao-Yang Ding,&nbsp;Ikram Ullah,&nbsp;Sadia Habib,&nbsp;Ghulam Murtaza and An-Wu Xu*,&nbsp;","doi":"10.1021/acsaem.4c0250910.1021/acsaem.4c02509","DOIUrl":null,"url":null,"abstract":"<p >The metal-free polymer semiconductor pristine carbon nitride (CN) has garnered notable interest; however, its poor photocatalytic activity constrains its practical uses. Herein, we synthesize cost-effective, nonhazardous, boron (B)-doped graphitic carbon nitride (BCN) through thermal polymerization. The successful grafting of BCN with 4,4′,4″-nitrilotribenzoic acid (NBA) donor molecules via an amide covalent bond presents the construction of BCN-NBA type II heterostructures. This extended π-conjugated NBA electron donor loaded on BCN exhibits band gap enhancement with wideband optical absorbance in the visible range and augmented efficiency for the spatial charge separation and transport of photogenerated charges owing to the formation of type II heterojunction. The optimal BCN-NBA-3 photocatalyst shows enhanced H<sub>2</sub> production mobility with a rate of 208.67 μmol h<sup>–1</sup> at visible light illumination (λ ≥ 420 nm) with 1% Pt as cocatalyst and a high apparent quantum efficiency (AQE) of 8.16% at 450 nm monochromatic light. Compared with pure CN (10.67 μmol h<sup>–1</sup>), about 19.56 folds higher H<sub>2</sub> evolution rate is observed for BCN-NBA-3 at visible light irradiation. Furthermore, the as-prepared photocatalyst displayed robust photocatalytic hydrogen generation for 16 h. This work emphasizes the possibility of using organic covalently functionalized CN to construct highly efficient heterostructured photocatalysts and opens up an avenue for practical applications in hydrogen production.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"12016–12026 12016–12026"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02509","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The metal-free polymer semiconductor pristine carbon nitride (CN) has garnered notable interest; however, its poor photocatalytic activity constrains its practical uses. Herein, we synthesize cost-effective, nonhazardous, boron (B)-doped graphitic carbon nitride (BCN) through thermal polymerization. The successful grafting of BCN with 4,4′,4″-nitrilotribenzoic acid (NBA) donor molecules via an amide covalent bond presents the construction of BCN-NBA type II heterostructures. This extended π-conjugated NBA electron donor loaded on BCN exhibits band gap enhancement with wideband optical absorbance in the visible range and augmented efficiency for the spatial charge separation and transport of photogenerated charges owing to the formation of type II heterojunction. The optimal BCN-NBA-3 photocatalyst shows enhanced H2 production mobility with a rate of 208.67 μmol h–1 at visible light illumination (λ ≥ 420 nm) with 1% Pt as cocatalyst and a high apparent quantum efficiency (AQE) of 8.16% at 450 nm monochromatic light. Compared with pure CN (10.67 μmol h–1), about 19.56 folds higher H2 evolution rate is observed for BCN-NBA-3 at visible light irradiation. Furthermore, the as-prepared photocatalyst displayed robust photocatalytic hydrogen generation for 16 h. This work emphasizes the possibility of using organic covalently functionalized CN to construct highly efficient heterostructured photocatalysts and opens up an avenue for practical applications in hydrogen production.

Abstract Image

4,4 ',4″-硝基三苯甲酸/石墨氮化碳II型异质结构用于高效光催化水裂解析氢
无金属聚合物半导体原始氮化碳(CN)引起了人们的极大兴趣;然而,其较差的光催化活性限制了其实际应用。在此,我们通过热聚合合成了具有成本效益,无害的硼(B)掺杂石墨氮化碳(BCN)。BCN通过酰胺共价键与4,4 ',4″-硝基三苯甲酸(NBA)供体分子成功接枝,构建了BCN-NBA II型异质结构。这种扩展π共轭的NBA电子给体负载在BCN上,由于形成II型异质结,在可见光范围内表现出宽带光学吸光度的带隙增强和光生电荷的空间分离和输运效率的提高。最佳BCN-NBA-3光催化剂在可见光(λ≥420 nm)下的产氢率为208.67 μmol h-1,在450 nm单色光下的表观量子效率(AQE)高达8.16%。与纯CN (10.67 μmol h-1)相比,BCN-NBA-3在可见光下的析氢速率提高了19.56倍。此外,所制备的光催化剂在16小时内表现出强大的光催化制氢能力。这项工作强调了使用有机共价官能化CN构建高效异质结构光催化剂的可能性,为实际应用于制氢开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信