Theoretical Perspective on the Sensing Mechanism of a Pyrazinium-Based Fluorescent Probe Towards 2,4,6-Trinitrophenol

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Meiheng Lv, Tingting Wang, Yuhang Zhang, Zexu Cai, Yue Gao, Feng Yan, Yifan Zhang, Jiaqi Song, Jianyong Liu
{"title":"Theoretical Perspective on the Sensing Mechanism of a Pyrazinium-Based Fluorescent Probe Towards 2,4,6-Trinitrophenol","authors":"Meiheng Lv,&nbsp;Tingting Wang,&nbsp;Yuhang Zhang,&nbsp;Zexu Cai,&nbsp;Yue Gao,&nbsp;Feng Yan,&nbsp;Yifan Zhang,&nbsp;Jiaqi Song,&nbsp;Jianyong Liu","doi":"10.1002/poc.4670","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rapid detection of chemical explosives plays a critical role in national security and public safety. An in-depth study of the sensing mechanism is particularly urgent for the development of highly efficient, sensitive, and selective chemical sensors for the precise detection of chemical explosives. Density functional theory (DFT) and time-dependent DFT approaches were used in this work to examine the sensing mechanism of a novel fluorescent probe 1-benzyl-3,5-di (thiophen-2-yl)pyrazin-1-ium bromide (BTPyz) for the detection of 2,4,6-trinitrophenol (TNP). A comprehensive theoretical exploration was carried out, and a different interaction mode between the probe and TNP from that in the original experiment was proposed. The π–π stacking was established to be the recognition interaction between BTPyz and TNP anion, and the active site was determined from the three potential sizes according to the Gibbs free energy analysis results. The rationality of the reaction mode and the π–π stacking product between the BTPyz and TNP (BTN) was further confirmed by the fluorescence properties (absorption and emission spectra). According to the findings of frontier molecular orbitals (FMOs), photoinduced electron transfer (PET) is the intrinsic mechanism through which TNP quenches the probe's fluorescence.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4670","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid detection of chemical explosives plays a critical role in national security and public safety. An in-depth study of the sensing mechanism is particularly urgent for the development of highly efficient, sensitive, and selective chemical sensors for the precise detection of chemical explosives. Density functional theory (DFT) and time-dependent DFT approaches were used in this work to examine the sensing mechanism of a novel fluorescent probe 1-benzyl-3,5-di (thiophen-2-yl)pyrazin-1-ium bromide (BTPyz) for the detection of 2,4,6-trinitrophenol (TNP). A comprehensive theoretical exploration was carried out, and a different interaction mode between the probe and TNP from that in the original experiment was proposed. The π–π stacking was established to be the recognition interaction between BTPyz and TNP anion, and the active site was determined from the three potential sizes according to the Gibbs free energy analysis results. The rationality of the reaction mode and the π–π stacking product between the BTPyz and TNP (BTN) was further confirmed by the fluorescence properties (absorption and emission spectra). According to the findings of frontier molecular orbitals (FMOs), photoinduced electron transfer (PET) is the intrinsic mechanism through which TNP quenches the probe's fluorescence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信