Mapping of Western Valles Marineris Light-Toned Layered Deposits and Newly Classified Rim Deposits

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Ivan G. Mishev, Isaac B. Smith, Cathy Quantin, Patrick Thollot, Nathaniel E. Putzig, Christina Viviano, Matt Chojnacki, Bruce Campbell
{"title":"Mapping of Western Valles Marineris Light-Toned Layered Deposits and Newly Classified Rim Deposits","authors":"Ivan G. Mishev,&nbsp;Isaac B. Smith,&nbsp;Cathy Quantin,&nbsp;Patrick Thollot,&nbsp;Nathaniel E. Putzig,&nbsp;Christina Viviano,&nbsp;Matt Chojnacki,&nbsp;Bruce Campbell","doi":"10.1029/2024JE008425","DOIUrl":null,"url":null,"abstract":"<p>Layered deposits are found on the plateaus surrounding the western portion of Valles Marineris, mantling the chasmata rims. These rim deposits exhibit intricate layering and are described as light-toned layered deposits (LLDs) in previous studies. Light-toned layered deposits are thought to be composed of pyroclastic ash that was emplaced during volcanic eruptions and later chemically altered. Using Shallow Radar (SHARAD) observations to map radar reflections from what appears to be the base of these deposits, we discovered two additional types of rim deposits that are contiguous with the well-known LLDs; weakly layered deposits (WLDs) that exhibit less obvious stratification and completely unstratified deposits designated as nonlayered deposits (NDs). Complementing the SHARAD data with imagery from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) and with narrow-angle imagery from the Mars Global Surveyor Mars Observer Camera (MOC-NA), we mapped the full extent of all rim deposits and present the finished map within this study. We hypothesize that all three deposits originate from pyroclastic ashfall but experienced different degrees of modification due to the variable presence of liquid water. This hypothesis requires a source of volcanic depositional material and past aqueous environments in regions with LLDs and WLDs. We discuss the potential for several large Tharsis volcanoes and a hypothesized degraded volcano within Noctis Labyrinthus as sources of the ash, and we examine the evidence for past aqueous environments.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008425","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008425","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Layered deposits are found on the plateaus surrounding the western portion of Valles Marineris, mantling the chasmata rims. These rim deposits exhibit intricate layering and are described as light-toned layered deposits (LLDs) in previous studies. Light-toned layered deposits are thought to be composed of pyroclastic ash that was emplaced during volcanic eruptions and later chemically altered. Using Shallow Radar (SHARAD) observations to map radar reflections from what appears to be the base of these deposits, we discovered two additional types of rim deposits that are contiguous with the well-known LLDs; weakly layered deposits (WLDs) that exhibit less obvious stratification and completely unstratified deposits designated as nonlayered deposits (NDs). Complementing the SHARAD data with imagery from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) and with narrow-angle imagery from the Mars Global Surveyor Mars Observer Camera (MOC-NA), we mapped the full extent of all rim deposits and present the finished map within this study. We hypothesize that all three deposits originate from pyroclastic ashfall but experienced different degrees of modification due to the variable presence of liquid water. This hypothesis requires a source of volcanic depositional material and past aqueous environments in regions with LLDs and WLDs. We discuss the potential for several large Tharsis volcanoes and a hypothesized degraded volcano within Noctis Labyrinthus as sources of the ash, and we examine the evidence for past aqueous environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信