Magmatic Evolution of the Marius Hills, Rümker Hills, and Gardner Volcanic Complexes on the Moon: Constraints From Topography and Gravity

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Haolin Yin, Qian Huang, Feng Zhang, Meixia Geng, Yuchao Chen, Jiannan Zhao
{"title":"Magmatic Evolution of the Marius Hills, Rümker Hills, and Gardner Volcanic Complexes on the Moon: Constraints From Topography and Gravity","authors":"Haolin Yin,&nbsp;Qian Huang,&nbsp;Feng Zhang,&nbsp;Meixia Geng,&nbsp;Yuchao Chen,&nbsp;Jiannan Zhao","doi":"10.1029/2024JE008421","DOIUrl":null,"url":null,"abstract":"<p>Marius Hills, Rümker Hills, and Gardner are three prominent volcanic complexes on the lunar nearside characterized by well-preserved elevated topography, highly concentrated domes/cones, and positive gravity anomalies. Here, we perform a comparative study of the geology and geophysics of these three volcanic complexes using multi-source remote-sensing data to better understand the volcanism diversity and magmatic evolution of the lunar nearside. Uniform and precise feature extraction methods are used to explore the morphological and geochemical characteristics of the volcanic complexes and their quasi-circular small shields (domes/cones). A new generalized approach based on three-dimensional (3D) gravity forward modeling is utilized to estimate the subsurface magma intrusion volumes. The results are about 2.63–6.65 × 10<sup>4</sup>, 1.48–3.86 × 10<sup>4</sup>, and 2.75–4.22 × 10<sup>4</sup> km<sup>3</sup> for the Marius Hills, Rümker Hills, and Gardner, respectively. Together with their extrusion volumes, Marius Hills has the largest magnitude of magmatic activity and the lowest ratio of intrusive versus extrusive volumes. Taking into account their geological and geophysical diversities, we propose three magma intrusion and extrusion schematic models and suggest that potassium, rare earth elements, and phosphorus (KREEP) may serve as an important driving force for the long-term and large-magnitude volcanism in Marius Hills, while the relatively short-lived and small-scale volcanism in Rümker Hills and Gardner may not be related to KREEP. Future geochemical studies of basalt samples from the Marius Hills region may provide additional clues to the role of KREEP in lunar nearside volcanism and thermal evolution.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008421","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Marius Hills, Rümker Hills, and Gardner are three prominent volcanic complexes on the lunar nearside characterized by well-preserved elevated topography, highly concentrated domes/cones, and positive gravity anomalies. Here, we perform a comparative study of the geology and geophysics of these three volcanic complexes using multi-source remote-sensing data to better understand the volcanism diversity and magmatic evolution of the lunar nearside. Uniform and precise feature extraction methods are used to explore the morphological and geochemical characteristics of the volcanic complexes and their quasi-circular small shields (domes/cones). A new generalized approach based on three-dimensional (3D) gravity forward modeling is utilized to estimate the subsurface magma intrusion volumes. The results are about 2.63–6.65 × 104, 1.48–3.86 × 104, and 2.75–4.22 × 104 km3 for the Marius Hills, Rümker Hills, and Gardner, respectively. Together with their extrusion volumes, Marius Hills has the largest magnitude of magmatic activity and the lowest ratio of intrusive versus extrusive volumes. Taking into account their geological and geophysical diversities, we propose three magma intrusion and extrusion schematic models and suggest that potassium, rare earth elements, and phosphorus (KREEP) may serve as an important driving force for the long-term and large-magnitude volcanism in Marius Hills, while the relatively short-lived and small-scale volcanism in Rümker Hills and Gardner may not be related to KREEP. Future geochemical studies of basalt samples from the Marius Hills region may provide additional clues to the role of KREEP in lunar nearside volcanism and thermal evolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信