Adrian M. Llop Recha, Dag T. Wisland, Tor S. Lande, Kristian G. Kjelgård
{"title":"Modelling of differential probing analysis for biomedical dielectric spectroscopy","authors":"Adrian M. Llop Recha, Dag T. Wisland, Tor S. Lande, Kristian G. Kjelgård","doi":"10.1049/smt2.12216","DOIUrl":null,"url":null,"abstract":"<p>Transcutaneous microwave dielectric spectroscopy holds promise as a modality for non-invasive subcutaneous biomarker monitoring, such as blood glucose levels. Experimental studies have demonstrated a strong correlation between blood glucose concentration and blood permittivity using microwave signals. However, the sample volume of interest, blood vessels, is located underneath skin layers where the microwave signal interaction with other surrounding biomaterials is accumulated. Here, a computational study of the proposed method to mitigate the contribution of unwanted tissue and thereby increase the specificity of subcutaneous spectroscopy, using differential probing analysis (DPA), is presented. By exploiting the relationship between the diameter of an open-ended coaxial probe (OCP) and the size of its protruding electric field, two OCPs with different sizes can sense different volumes beneath the skin. The proposed method computationally subtracts the effect of unwanted tissue, estimated with the smaller probe, from the effective contribution of both blood and unwanted tissue with the larger one. The method is validated by using simulated models and data from the full wave software CST Studio Suite across frequencies ranging from 1 to 10 GHz, achieving errors comparable to state-of-the-art techniques.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"19 1","pages":"1-12"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transcutaneous microwave dielectric spectroscopy holds promise as a modality for non-invasive subcutaneous biomarker monitoring, such as blood glucose levels. Experimental studies have demonstrated a strong correlation between blood glucose concentration and blood permittivity using microwave signals. However, the sample volume of interest, blood vessels, is located underneath skin layers where the microwave signal interaction with other surrounding biomaterials is accumulated. Here, a computational study of the proposed method to mitigate the contribution of unwanted tissue and thereby increase the specificity of subcutaneous spectroscopy, using differential probing analysis (DPA), is presented. By exploiting the relationship between the diameter of an open-ended coaxial probe (OCP) and the size of its protruding electric field, two OCPs with different sizes can sense different volumes beneath the skin. The proposed method computationally subtracts the effect of unwanted tissue, estimated with the smaller probe, from the effective contribution of both blood and unwanted tissue with the larger one. The method is validated by using simulated models and data from the full wave software CST Studio Suite across frequencies ranging from 1 to 10 GHz, achieving errors comparable to state-of-the-art techniques.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.