Jun Hwan Park, Seungeun Lim, Changmo Yeo, Youn-Kyoung Joung, Duhwan Mun
{"title":"DFGAT for recognizing design features from a B-rep model for mechanical parts","authors":"Jun Hwan Park, Seungeun Lim, Changmo Yeo, Youn-Kyoung Joung, Duhwan Mun","doi":"10.1016/j.rcim.2024.102938","DOIUrl":null,"url":null,"abstract":"Design feature recognition plays a crucial role in digital manufacturing and is a key technology in automatic design verification. Traditional methods and deep learning approaches provide various strategies for feature recognition. However, these methods primarily address part classification or machining feature recognition, with limited research focusing on design feature recognition. To address this gap, a novel deep learning network called the design feature graph attention network (DFGAT) was proposed specifically for design feature recognition. In this study, the original boundary representation (B-rep) model is first converted into graph representation. Design feature recognition is then achieved using the DFGAT, which is based on the GAT. Additionally, the dataset generation process was generalized to efficiently train the deep learning model. To validate the performance of the DFGAT, experiments were conducted to recognize the representative faces of design features, such as snap-fit hooks, cups, and plates, in the EIF_Panel, Real_Panel, and Anemometer models. The experiments demonstrated F1-scores of 0.9924, 0.9982, and 1.0000.","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"52 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.rcim.2024.102938","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Design feature recognition plays a crucial role in digital manufacturing and is a key technology in automatic design verification. Traditional methods and deep learning approaches provide various strategies for feature recognition. However, these methods primarily address part classification or machining feature recognition, with limited research focusing on design feature recognition. To address this gap, a novel deep learning network called the design feature graph attention network (DFGAT) was proposed specifically for design feature recognition. In this study, the original boundary representation (B-rep) model is first converted into graph representation. Design feature recognition is then achieved using the DFGAT, which is based on the GAT. Additionally, the dataset generation process was generalized to efficiently train the deep learning model. To validate the performance of the DFGAT, experiments were conducted to recognize the representative faces of design features, such as snap-fit hooks, cups, and plates, in the EIF_Panel, Real_Panel, and Anemometer models. The experiments demonstrated F1-scores of 0.9924, 0.9982, and 1.0000.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.