{"title":"Copper-Catalyzed Cyclization and Alkene Transposition Cascade Enables a Modular Synthesis of Complex Spirocyclic Ethers","authors":"Wan-Xu Wei, Yangjin Kuang, Martin Tomanik","doi":"10.1021/jacs.4c14418","DOIUrl":null,"url":null,"abstract":"Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C–H functionalization. Our transformation displays a broad substrate scope, shows excellent heteroatom compatibility, and readily constructs spirocycles of varying ring sizes. The wider synthetic utility of this method is highlighted by numerous product diversifications and a short synthesis of the all-carbon framework of spirotenuipesine A. We anticipate that this transformation can significantly streamline access to a privileged class of three-dimensional oxygen-containing heterocycles and will find broad application in natural product synthesis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"268 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14418","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C–H functionalization. Our transformation displays a broad substrate scope, shows excellent heteroatom compatibility, and readily constructs spirocycles of varying ring sizes. The wider synthetic utility of this method is highlighted by numerous product diversifications and a short synthesis of the all-carbon framework of spirotenuipesine A. We anticipate that this transformation can significantly streamline access to a privileged class of three-dimensional oxygen-containing heterocycles and will find broad application in natural product synthesis.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.