{"title":"Deep Attention Learning for Pre-operative Lymph Node Metastasis Prediction in Pancreatic Cancer via Multi-object Relationship Modeling","authors":"Zhilin Zheng, Xu Fang, Jiawen Yao, Mengmeng Zhu, Le Lu, Yu Shi, Hong Lu, Jianping Lu, Ling Zhang, Chengwei Shao, Yun Bian","doi":"10.1007/s11263-024-02314-1","DOIUrl":null,"url":null,"abstract":"<p>Lymph node (LN) metastasis status is one of the most critical prognostic and cancer staging clinical factors for patients with resectable pancreatic ductal adenocarcinoma (PDAC, generally for any types of solid malignant tumors). Pre-operative prediction of LN metastasis from non-invasive CT imaging is highly desired, as it might be directly and conveniently used to guide the follow-up neoadjuvant treatment decision and surgical planning. Most previous studies only use the tumor characteristics in CT imaging alone to implicitly infer LN metastasis. To the best of our knowledge, this is the first work to propose a fully-automated LN segmentation and identification network to directly facilitate the LN metastasis status prediction task for patients with PDAC. Specially, (1) we explore the anatomical spatial context priors of pancreatic LN locations by generating a guiding attention map from related organs and vessels to assist segmentation and infer LN status. As such, LN segmentation is impelled to focus on regions that are anatomically adjacent or plausible with respect to the specific organs and vessels. (2) The metastasized LN identification network is trained to classify the segmented LN instances into positives or negatives by reusing the segmentation network as a pre-trained backbone and padding a new classification head. (3) Importantly, we develop a LN metastasis status prediction network that combines and aggregates the holistic patient-wise diagnosis information of both LN segmentation/identification and deep imaging characteristics by the PDAC tumor region. Extensive quantitative nested five-fold cross-validation is conducted on a discovery dataset of 749 patients with PDAC. External multi-center clinical evaluation is further performed on two other hospitals of 191 total patients. Our multi-staged LN metastasis status prediction network statistically significantly outperforms strong baselines of nnUNet and several other compared methods, including CT-reported LN status, radiomics, and deep learning models.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"31 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02314-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lymph node (LN) metastasis status is one of the most critical prognostic and cancer staging clinical factors for patients with resectable pancreatic ductal adenocarcinoma (PDAC, generally for any types of solid malignant tumors). Pre-operative prediction of LN metastasis from non-invasive CT imaging is highly desired, as it might be directly and conveniently used to guide the follow-up neoadjuvant treatment decision and surgical planning. Most previous studies only use the tumor characteristics in CT imaging alone to implicitly infer LN metastasis. To the best of our knowledge, this is the first work to propose a fully-automated LN segmentation and identification network to directly facilitate the LN metastasis status prediction task for patients with PDAC. Specially, (1) we explore the anatomical spatial context priors of pancreatic LN locations by generating a guiding attention map from related organs and vessels to assist segmentation and infer LN status. As such, LN segmentation is impelled to focus on regions that are anatomically adjacent or plausible with respect to the specific organs and vessels. (2) The metastasized LN identification network is trained to classify the segmented LN instances into positives or negatives by reusing the segmentation network as a pre-trained backbone and padding a new classification head. (3) Importantly, we develop a LN metastasis status prediction network that combines and aggregates the holistic patient-wise diagnosis information of both LN segmentation/identification and deep imaging characteristics by the PDAC tumor region. Extensive quantitative nested five-fold cross-validation is conducted on a discovery dataset of 749 patients with PDAC. External multi-center clinical evaluation is further performed on two other hospitals of 191 total patients. Our multi-staged LN metastasis status prediction network statistically significantly outperforms strong baselines of nnUNet and several other compared methods, including CT-reported LN status, radiomics, and deep learning models.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.