Large Language Models for More Efficient Reporting of Hospital Quality Measures.

NEJM AI Pub Date : 2024-10-24 Epub Date: 2024-10-21 DOI:10.1056/aics2400420
Aaron Boussina, Rishivardhan Krishnamoorthy, Kimberly Quintero, Shreyansh Joshi, Gabriel Wardi, Hayden Pour, Nicholas Hilbert, Atul Malhotra, Michael Hogarth, Amy M Sitapati, Chad VanDenBerg, Karandeep Singh, Christopher A Longhurst, Shamim Nemati
{"title":"Large Language Models for More Efficient Reporting of Hospital Quality Measures.","authors":"Aaron Boussina, Rishivardhan Krishnamoorthy, Kimberly Quintero, Shreyansh Joshi, Gabriel Wardi, Hayden Pour, Nicholas Hilbert, Atul Malhotra, Michael Hogarth, Amy M Sitapati, Chad VanDenBerg, Karandeep Singh, Christopher A Longhurst, Shamim Nemati","doi":"10.1056/aics2400420","DOIUrl":null,"url":null,"abstract":"<p><p>Hospital quality measures are a vital component of a learning health system, yet they can be costly to report, statistically underpowered, and inconsistent due to poor interrater reliability. Large language models (LLMs) have recently demonstrated impressive performance on health care-related tasks and offer a promising way to provide accurate abstraction of complete charts at scale. To evaluate this approach, we deployed an LLM-based system that ingests Fast Healthcare Interoperability Resources data and outputs a completed Severe Sepsis and Septic Shock Management Bundle (SEP-1) abstraction. We tested the system on a sample of 100 manual SEP-1 abstractions that University of California San Diego Health reported to the Centers for Medicare & Medicaid Services in 2022. The LLM system achieved agreement with manual abstractors on the measure category assignment in 90 of the abstractions (90%; κ=0.82; 95% confidence interval, 0.71 to 0.92). Expert review of the 10 discordant cases identified four that were mistakes introduced by manual abstraction. This pilot study suggests that LLMs using interoperable electronic health record data may perform accurate abstractions for complex quality measures. (Funded by the National Institute of Allergy and Infectious Diseases [1R42AI177108-1] and others.).</p>","PeriodicalId":520343,"journal":{"name":"NEJM AI","volume":"1 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEJM AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1056/aics2400420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hospital quality measures are a vital component of a learning health system, yet they can be costly to report, statistically underpowered, and inconsistent due to poor interrater reliability. Large language models (LLMs) have recently demonstrated impressive performance on health care-related tasks and offer a promising way to provide accurate abstraction of complete charts at scale. To evaluate this approach, we deployed an LLM-based system that ingests Fast Healthcare Interoperability Resources data and outputs a completed Severe Sepsis and Septic Shock Management Bundle (SEP-1) abstraction. We tested the system on a sample of 100 manual SEP-1 abstractions that University of California San Diego Health reported to the Centers for Medicare & Medicaid Services in 2022. The LLM system achieved agreement with manual abstractors on the measure category assignment in 90 of the abstractions (90%; κ=0.82; 95% confidence interval, 0.71 to 0.92). Expert review of the 10 discordant cases identified four that were mistakes introduced by manual abstraction. This pilot study suggests that LLMs using interoperable electronic health record data may perform accurate abstractions for complex quality measures. (Funded by the National Institute of Allergy and Infectious Diseases [1R42AI177108-1] and others.).

更有效地报告医院质量措施的大型语言模型。
医院质量措施是学习型卫生系统的重要组成部分,但报告这些措施可能成本高昂,统计力度不足,而且由于相互间可靠性差而不一致。大型语言模型(llm)最近在医疗保健相关任务上展示了令人印象深刻的性能,并提供了一种有希望的方式来提供大规模完整图表的准确抽象。为了评估这种方法,我们部署了一个基于llm的系统,该系统摄取快速医疗保健互操作性资源数据并输出完整的严重败血症和感染性休克管理包(SEP-1)抽象。我们在加州大学圣地亚哥分校健康中心(University of California San Diego Health)于2022年向医疗保险和医疗补助服务中心(Centers for Medicare & Medicaid Services)报告的100份手动SEP-1摘要样本上测试了该系统。LLM系统在90个抽象(90%;κ= 0.82;95%置信区间,0.71 ~ 0.92)。专家对10个不一致的案例进行了审查,发现其中4个是由人工抽象引入的错误。这项试点研究表明,使用可互操作的电子健康记录数据的llm可以对复杂的质量测量进行准确的抽象。(由国家过敏和传染病研究所[1R42AI177108-1]等资助。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信