Spectrum of errors in nodule detection and characterization using machine learning: A pictorial essay.

Jabi E Shriki, Ted Selker, Kristina Crothers, Mark Deffebach, Safia Cheeney, Jeffrey Edelman, Anupama Brixey, Mark Tubay, Laura Spece, Sirish Kishore
{"title":"Spectrum of errors in nodule detection and characterization using machine learning: A pictorial essay.","authors":"Jabi E Shriki, Ted Selker, Kristina Crothers, Mark Deffebach, Safia Cheeney, Jeffrey Edelman, Anupama Brixey, Mark Tubay, Laura Spece, Sirish Kishore","doi":"10.1067/j.cpradiol.2024.10.039","DOIUrl":null,"url":null,"abstract":"<p><p>In academic and research settings, computer-aided nodule detection software has been shown to increase accuracy, efficiency, and throughput. However, radiologists need to be familiar with the spectrum of errors that can occur when these algorithms are employed in routine clinical settings. We review the spectrum of errors that may result from computer-aided nodule detection. In our clinical practice, we have seen errors in nodule detection, nodule localization, and nodule characterization. Each of these categories are demonstrated with illustrative cases. Through these illustrative cases, readers can be more familiar with nuances and pitfalls generated by computer-aided detection software. Although computer-aided nodule detection software is rapidly advancing, radiologists still need to thoroughly review images with mindfulness of some of the errors that can be generated by AI platforms for nodule detection.</p>","PeriodicalId":93969,"journal":{"name":"Current problems in diagnostic radiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current problems in diagnostic radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1067/j.cpradiol.2024.10.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In academic and research settings, computer-aided nodule detection software has been shown to increase accuracy, efficiency, and throughput. However, radiologists need to be familiar with the spectrum of errors that can occur when these algorithms are employed in routine clinical settings. We review the spectrum of errors that may result from computer-aided nodule detection. In our clinical practice, we have seen errors in nodule detection, nodule localization, and nodule characterization. Each of these categories are demonstrated with illustrative cases. Through these illustrative cases, readers can be more familiar with nuances and pitfalls generated by computer-aided detection software. Although computer-aided nodule detection software is rapidly advancing, radiologists still need to thoroughly review images with mindfulness of some of the errors that can be generated by AI platforms for nodule detection.

使用机器学习的结节检测和表征中的误差谱:一篇图片文章。
在学术和研究环境中,计算机辅助结节检测软件已被证明可以提高准确性、效率和吞吐量。然而,放射科医生需要熟悉在常规临床环境中使用这些算法时可能发生的各种错误。我们回顾了计算机辅助结节检测可能导致的错误谱。在我们的临床实践中,我们看到在结节检测、结节定位和结节特征方面的错误。每个类别都用说明性案例进行了演示。通过这些说明性的案例,读者可以更熟悉计算机辅助检测软件产生的细微差别和陷阱。尽管计算机辅助结节检测软件正在迅速发展,但放射科医生仍然需要彻底检查图像,并注意人工智能结节检测平台可能产生的一些错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信