Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils.

Hsiang-Ruei Liao, Chen-Lung Chen, Yu-Yao Kao, Fu-Chao Liu, Ching-Ping Tseng, Jih-Jung Chen
{"title":"Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils.","authors":"Hsiang-Ruei Liao, Chen-Lung Chen, Yu-Yao Kao, Fu-Chao Liu, Ching-Ping Tseng, Jih-Jung Chen","doi":"10.1016/j.cbi.2024.111357","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation. This study examines the effects and underlying mechanism of myriscagayanone C, a new compound obtained from the fruit of myristica cagayanensis, on neutrophil respiratory burst induced by fMLP. The immunoblotting assay was conducted to assess the mechanisms by which myriscagayanone C inhibits fMLP-induced respiratory burst by disrupting the translocation of Akt to the cellular membrane. Briefly, myriscagayanone C suppressed the production of superoxide anions induced by fMLP on human neutrophils in a concentration-dependent manner (IC<sub>50</sub>: 4.73±0.68 μM). Myriscagayanone C blocked fMLP-induced Akt translocation to the cell membrane, inhibiting Akt<sup>T308</sup> and Akt<sup>S473</sup> phosphorylation by PDK1<sup>Y373/376</sup> and mTOR<sup>S2481</sup>, respectively. Myriscagayanone C inhibited fMLP-induced p47<sup>phox</sup> phosphorylation and translocation. Myriscagayanone C did not inhibit the activity of PI3K, the amount of phosphatidylinositol (3, 4, 5)-trisphosphate, or the translocation of phosphorylated-PDK1<sup>Y373/376</sup> and -mTOR<sup>S2481</sup> to the membrane. Myriscagayanone C did not inhibit fMLP-induced PKC, Src, ERK1/2, p38 phosphorylation, and intracellular calcium mobilization. Myriscagayanone C did not inhibit the chemotaxis and CD11b expression induced by fMLP. Myriscagayanone C did not inhibit PMA-induced superoxide anion production and neutrophil extracellular trap formation. According to this data, myriscagayanone C inhibits fMLP-induced neutrophil superoxide anion production by interrupting the translocation of Akt to the plasma membrane, which affects the NADPH oxidase activity by preventing p47<sup>phox</sup> phosphorylation and translocation.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111357"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2024.111357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation. This study examines the effects and underlying mechanism of myriscagayanone C, a new compound obtained from the fruit of myristica cagayanensis, on neutrophil respiratory burst induced by fMLP. The immunoblotting assay was conducted to assess the mechanisms by which myriscagayanone C inhibits fMLP-induced respiratory burst by disrupting the translocation of Akt to the cellular membrane. Briefly, myriscagayanone C suppressed the production of superoxide anions induced by fMLP on human neutrophils in a concentration-dependent manner (IC50: 4.73±0.68 μM). Myriscagayanone C blocked fMLP-induced Akt translocation to the cell membrane, inhibiting AktT308 and AktS473 phosphorylation by PDK1Y373/376 and mTORS2481, respectively. Myriscagayanone C inhibited fMLP-induced p47phox phosphorylation and translocation. Myriscagayanone C did not inhibit the activity of PI3K, the amount of phosphatidylinositol (3, 4, 5)-trisphosphate, or the translocation of phosphorylated-PDK1Y373/376 and -mTORS2481 to the membrane. Myriscagayanone C did not inhibit fMLP-induced PKC, Src, ERK1/2, p38 phosphorylation, and intracellular calcium mobilization. Myriscagayanone C did not inhibit the chemotaxis and CD11b expression induced by fMLP. Myriscagayanone C did not inhibit PMA-induced superoxide anion production and neutrophil extracellular trap formation. According to this data, myriscagayanone C inhibits fMLP-induced neutrophil superoxide anion production by interrupting the translocation of Akt to the plasma membrane, which affects the NADPH oxidase activity by preventing p47phox phosphorylation and translocation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信