Ligand identification in CryoEM and X-ray maps using deep learning.

Jacek Karolczak, Anna Przybyłowska, Konrad Szewczyk, Witold Taisner, John M Heumann, Michael H B Stowell, Michał Nowicki, Dariusz Brzezinski
{"title":"Ligand identification in CryoEM and X-ray maps using deep learning.","authors":"Jacek Karolczak, Anna Przybyłowska, Konrad Szewczyk, Witold Taisner, John M Heumann, Michael H B Stowell, Michał Nowicki, Dariusz Brzezinski","doi":"10.1093/bioinformatics/btae749","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurately identifying ligands plays a crucial role in the process of structure-guided drug design. Based on density maps from X-ray diffraction or cryogenic-sample electron microscopy (cryoEM), scientists verify whether small-molecule ligands bind to active sites of interest. However, the interpretation of density maps is challenging, and cognitive bias can sometimes mislead investigators into modeling fictitious compounds. Ligand identification can be aided by automatic methods, but existing approaches are available only for X-ray diffraction and are based on iterative fitting or feature-engineered machine learning rather than end-to-end deep learning.</p><p><strong>Results: </strong>Here, we propose to identify ligands using a deep-learning approach that treats density maps as 3D point clouds. We show that the proposed model is on par with existing machine learning methods for X-ray crystallography while also being applicable to cryoEM density maps. Our study demonstrates that electron density map fragments can aid the training of models that can later be applied to cryoEM structures but also highlights challenges associated with the standardization of electron microscopy maps and the quality assessment of cryoEM ligands.</p><p><strong>Availability and implementation: </strong>Code and model weights are available on GitHub at https://github.com/jkarolczak/ligands-classification. An accompanying ChimeraX bundle is available at https://github.com/wtaisner/chimerax-ligand-recognizer.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Accurately identifying ligands plays a crucial role in the process of structure-guided drug design. Based on density maps from X-ray diffraction or cryogenic-sample electron microscopy (cryoEM), scientists verify whether small-molecule ligands bind to active sites of interest. However, the interpretation of density maps is challenging, and cognitive bias can sometimes mislead investigators into modeling fictitious compounds. Ligand identification can be aided by automatic methods, but existing approaches are available only for X-ray diffraction and are based on iterative fitting or feature-engineered machine learning rather than end-to-end deep learning.

Results: Here, we propose to identify ligands using a deep-learning approach that treats density maps as 3D point clouds. We show that the proposed model is on par with existing machine learning methods for X-ray crystallography while also being applicable to cryoEM density maps. Our study demonstrates that electron density map fragments can aid the training of models that can later be applied to cryoEM structures but also highlights challenges associated with the standardization of electron microscopy maps and the quality assessment of cryoEM ligands.

Availability and implementation: Code and model weights are available on GitHub at https://github.com/jkarolczak/ligands-classification. An accompanying ChimeraX bundle is available at https://github.com/wtaisner/chimerax-ligand-recognizer.

利用深度学习在低温电镜和x射线图中识别配体。
动机:准确识别配体在结构导向药物设计过程中起着至关重要的作用。根据x射线衍射或低温样品电子显微镜(cryoEM)的密度图,科学家验证小分子配体是否与感兴趣的活性位点结合。然而,密度图的解释是具有挑战性的,认知偏见有时会误导研究人员建模虚构的化合物。配体识别可以通过自动方法辅助,但现有方法仅适用于x射线衍射,并且基于迭代拟合或特征工程机器学习,而不是端到端深度学习。结果:在这里,我们建议使用深度学习方法来识别配体,该方法将密度图视为3D点云。我们表明,所提出的模型与现有的x射线晶体学机器学习方法相当,同时也适用于低温电镜密度图。我们的研究表明,电子密度图片段可以帮助训练模型,这些模型可以稍后应用于低温电子显微镜结构,但也突出了与电子显微镜图标准化和低温电子显微镜配体质量评估相关的挑战。可用性:代码和模型权重可在GitHub上获得https://github.com/jkarolczak/ligands-classification。用于训练和测试的数据集托管在Zenodo: 10.5281/ Zenodo .10908325。随附的ChimeraX捆绑包可在https://github.com/wtaisner/chimerax-ligand-recognizer.Supplementary上获得:补充数据可在Bioinformatics online上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信