DiffMAP-GP: Continuous 2D diffusion maps from particle trajectories without data binning using Gaussian processes.

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2025-03-12 Epub Date: 2024-12-17 DOI:10.1016/j.bpr.2024.100194
Vishesh Kumar, J Shepard Bryan, Alex Rojewski, Carlo Manzo, Steve Pressé
{"title":"DiffMAP-GP: Continuous 2D diffusion maps from particle trajectories without data binning using Gaussian processes.","authors":"Vishesh Kumar, J Shepard Bryan, Alex Rojewski, Carlo Manzo, Steve Pressé","doi":"10.1016/j.bpr.2024.100194","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we develop a Bayesian framework (DiffMAP-GP) by placing Gaussian process (GP) priors on the family of candidate maps. For sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to nonconjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100194"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we develop a Bayesian framework (DiffMAP-GP) by placing Gaussian process (GP) priors on the family of candidate maps. For sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to nonconjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.

DiffMAP-GP:连续二维扩散图从粒子轨迹没有数据盒使用高斯过程。
扩散系数通常在不同区域(如细胞膜)之间变化,量化它们的变化可以提供对局部膜特性(如组成和刚度)有价值的见解。为了量化粒子轨迹的扩散系数空间图和不确定性,我们通过在候选图族上放置高斯过程(GP)先验,开发了一个贝叶斯框架(DiffMAP-GP)。为了提高计算效率,我们利用诱导点方法来处理由数据的数学结构引起的非共轭似然先验对。我们分析了已知的合成数据,以及从膜蛋白的活细胞单分子成像中提取的数据。由此产生的工具提供了一种无监督的方法来严格映射连续跨膜的扩散系数,而无需数据分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信