Kentaro Tominaga , Daniel O. Kechele , J. Guillermo Sanchez , Simon Vales , Ingrid Jurickova , Lizza Roman , Akihiro Asai , Jacob R. Enriquez , Heather A. McCauley , Keishi Kishimoto , Kentaro Iwasawa , Akaljot Singh , Yuko Horio , Jorge O. Múnera , Takanori Takebe , Aaron M. Zorn , Michael A. Helmrath , Lee A. Denson , James M. Wells
{"title":"Deriving Human Intestinal Organoids with Functional Tissue-Resident Macrophages All From Pluripotent Stem Cells","authors":"Kentaro Tominaga , Daniel O. Kechele , J. Guillermo Sanchez , Simon Vales , Ingrid Jurickova , Lizza Roman , Akihiro Asai , Jacob R. Enriquez , Heather A. McCauley , Keishi Kishimoto , Kentaro Iwasawa , Akaljot Singh , Yuko Horio , Jorge O. Múnera , Takanori Takebe , Aaron M. Zorn , Michael A. Helmrath , Lee A. Denson , James M. Wells","doi":"10.1016/j.jcmgh.2024.101444","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & Aims</h3><div>Organs of the gastrointestinal tract contain tissue-resident immune cells that function during tissue development, homeostasis, and disease. However, most published human organoid model systems lack resident immune cells, thus limiting their potential as disease avatars. For example, human intestinal organoids (HIOs) derived from pluripotent stem cells contain epithelial and various mesenchymal cell types but lack immune cells. In this study, we aimed to develop an HIO model with functional tissue-resident macrophages.</div></div><div><h3>Methods</h3><div>HIOs and macrophages were generated separately through the directed differentiation of human pluripotent stem cells and combined in vitro. Following 2 weeks of coculture, the organoids were used for transcriptional profiling, functional analysis of macrophages, or transplanted into immunocompromised mice and matured in vivo for an additional 10–12 weeks.</div></div><div><h3>Results</h3><div>Macrophages were incorporated into developing HIOs and persisted for 2 weeks in vitro HIOs and for at least 12 weeks in HIOs in vivo. These cocultured macrophages had a transcriptional signature that resembled those in the human fetal intestine, indicating that they were acquiring the features of tissue-resident macrophages. HIO macrophages could phagocytose bacteria and produced inflammatory cytokines in response to proinflammatory signals, such as lipopolysaccharide, which could be reversed with interleukin-10.</div></div><div><h3>Conclusions</h3><div>We generated an HIO system containing functional tissue-resident macrophages for an extended period. This new organoid system can be used to investigate the molecular mechanisms involved in inflammatory bowel disease.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"19 4","pages":"Article 101444"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24001991","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims
Organs of the gastrointestinal tract contain tissue-resident immune cells that function during tissue development, homeostasis, and disease. However, most published human organoid model systems lack resident immune cells, thus limiting their potential as disease avatars. For example, human intestinal organoids (HIOs) derived from pluripotent stem cells contain epithelial and various mesenchymal cell types but lack immune cells. In this study, we aimed to develop an HIO model with functional tissue-resident macrophages.
Methods
HIOs and macrophages were generated separately through the directed differentiation of human pluripotent stem cells and combined in vitro. Following 2 weeks of coculture, the organoids were used for transcriptional profiling, functional analysis of macrophages, or transplanted into immunocompromised mice and matured in vivo for an additional 10–12 weeks.
Results
Macrophages were incorporated into developing HIOs and persisted for 2 weeks in vitro HIOs and for at least 12 weeks in HIOs in vivo. These cocultured macrophages had a transcriptional signature that resembled those in the human fetal intestine, indicating that they were acquiring the features of tissue-resident macrophages. HIO macrophages could phagocytose bacteria and produced inflammatory cytokines in response to proinflammatory signals, such as lipopolysaccharide, which could be reversed with interleukin-10.
Conclusions
We generated an HIO system containing functional tissue-resident macrophages for an extended period. This new organoid system can be used to investigate the molecular mechanisms involved in inflammatory bowel disease.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.