Optimal Representative Strain selector-a comprehensive pipeline for selecting next-generation reference strains of bacterial species.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae173
Chiara Tarracchini, Federico Fontana, Silvia Petraro, Gabriele Andrea Lugli, Leonardo Mancabelli, Francesca Turroni, Marco Ventura, Christian Milani
{"title":"Optimal Representative Strain selector-a comprehensive pipeline for selecting next-generation reference strains of bacterial species.","authors":"Chiara Tarracchini, Federico Fontana, Silvia Petraro, Gabriele Andrea Lugli, Leonardo Mancabelli, Francesca Turroni, Marco Ventura, Christian Milani","doi":"10.1093/nargab/lqae173","DOIUrl":null,"url":null,"abstract":"<p><p>Although it is common practice to use historically established 'reference strains' or 'type strains' for laboratory experiments, this approach often overlooks how effectively these strains represent the full ecological, genetic and functional diversity of the species within a specific ecological niche. In this context, this study proposes the Optimal Representative Strain (ORS) selector tool (https://zenodo.org/doi/10.5281/zenodo.13772191), an innovative bioinformatic pipeline capable of evaluating how a strain represents its whole species from a genetic and functional perspective, in addition to considering its ecological distribution in a particular ecological niche. Based on publicly available genomes, the strain that best fits all these three microbiological aspects is designated as an optimal representative strain. Moreover, a user-friendly software called Local Alternative Optimal Representative Strain selector was developed to allow researchers to screen their local library of bacterial strains for an optimal available alternative based on the reference optimal representative strain. Five different bacterial species, i.e. <i>Lacticaseibacillus paracasei</i>, <i>Lactobacillus delbrueckii</i>, <i>Streptococcus thermophilus</i>, <i>Bacteroides thetaiotaomicron</i> and <i>Lactococcus lactis</i>, were tested in three different environments to evaluate the performance of the bioinformatic pipeline in selecting optimal representative strains.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae173"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Although it is common practice to use historically established 'reference strains' or 'type strains' for laboratory experiments, this approach often overlooks how effectively these strains represent the full ecological, genetic and functional diversity of the species within a specific ecological niche. In this context, this study proposes the Optimal Representative Strain (ORS) selector tool (https://zenodo.org/doi/10.5281/zenodo.13772191), an innovative bioinformatic pipeline capable of evaluating how a strain represents its whole species from a genetic and functional perspective, in addition to considering its ecological distribution in a particular ecological niche. Based on publicly available genomes, the strain that best fits all these three microbiological aspects is designated as an optimal representative strain. Moreover, a user-friendly software called Local Alternative Optimal Representative Strain selector was developed to allow researchers to screen their local library of bacterial strains for an optimal available alternative based on the reference optimal representative strain. Five different bacterial species, i.e. Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Streptococcus thermophilus, Bacteroides thetaiotaomicron and Lactococcus lactis, were tested in three different environments to evaluate the performance of the bioinformatic pipeline in selecting optimal representative strains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信