Improved characterization of 3' single-cell RNA-seq libraries with paired-end avidity sequencing.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae175
John T Chamberlin, Austin E Gillen, Aaron R Quinlan
{"title":"Improved characterization of 3' single-cell RNA-seq libraries with paired-end avidity sequencing.","authors":"John T Chamberlin, Austin E Gillen, Aaron R Quinlan","doi":"10.1093/nargab/lqae175","DOIUrl":null,"url":null,"abstract":"<p><p>Prevailing poly(dT)-primed 3' single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site or in principle the polyadenylation site. Direct sequencing across this site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the 'barcode' end. Here, we evaluate the capability of 'avidity base chemistry' DNA sequencing from Element Biosciences to sequence through the primer and enable accurate paired-end read alignment and precise quantification of polyadenylation sites. We find that the Element Aviti instrument sequences through the thymine homopolymer into the subsequent cDNA sequence without detectable loss of accuracy. The additional sequence enables direct and independent assignment of reads to polyadenylation sites, which bypasses the complexities and limitations of conventional approaches but does not consistently improve read mapping rates compared to single-end alignment. We also characterize low-level artifacts and demonstrate necessary adjustments to adapter trimming and sequence alignment regardless of platform, particularly in the context of extended read lengths. Our analyses confirm that Element avidity sequencing is an effective alternative to Illumina sequencing for standard single-cell RNA-seq, particularly for polyadenylation site measurement but do not rule out the potential for similar performance from other emerging platforms.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae175"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Prevailing poly(dT)-primed 3' single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site or in principle the polyadenylation site. Direct sequencing across this site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the 'barcode' end. Here, we evaluate the capability of 'avidity base chemistry' DNA sequencing from Element Biosciences to sequence through the primer and enable accurate paired-end read alignment and precise quantification of polyadenylation sites. We find that the Element Aviti instrument sequences through the thymine homopolymer into the subsequent cDNA sequence without detectable loss of accuracy. The additional sequence enables direct and independent assignment of reads to polyadenylation sites, which bypasses the complexities and limitations of conventional approaches but does not consistently improve read mapping rates compared to single-end alignment. We also characterize low-level artifacts and demonstrate necessary adjustments to adapter trimming and sequence alignment regardless of platform, particularly in the context of extended read lengths. Our analyses confirm that Element avidity sequencing is an effective alternative to Illumina sequencing for standard single-cell RNA-seq, particularly for polyadenylation site measurement but do not rule out the potential for similar performance from other emerging platforms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信