IDclust: Iterative clustering for unsupervised identification of cell types with single cell transcriptomics and epigenomics.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae174
Pacôme Prompsy, Mélissa Saichi, Félix Raimundo, Céline Vallot
{"title":"IDclust: Iterative clustering for unsupervised identification of cell types with single cell transcriptomics and epigenomics.","authors":"Pacôme Prompsy, Mélissa Saichi, Félix Raimundo, Céline Vallot","doi":"10.1093/nargab/lqae174","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing diversity of single-cell datasets require systematic cell type characterization. Clustering is a critical step in single-cell analysis, heavily influencing downstream analyses. However, current unsupervised clustering algorithms rely on biologically irrelevant parameters that require manual optimization and fail to capture hierarchical relationships between clusters. We developed IDclust, a framework that identifies clusters with significant biological features at multiple resolutions using biologically meaningful thresholds like fold change, adjusted <i>P</i>-value and fraction of expressing cells. By iteratively processing and clustering subsets of the dataset, IDclust guarantees that all clusters found have significantly different features and stops only when no more interpretable cluster is found. It also creates a hierarchy of clusters, enabling visualization of the hierarchical relationships between different clusters. Analyzing multiple single-cell transcriptomic reference datasets, IDclust achieves superior clustering accuracy compared to state of the art algorithms. We showcase its utility by identifying previously unannotated clusters and identifying branching patterns in scATAC datasets. Using it's unsupervised nature and ability to analyze different -omics, we compare the resolution of different histone marks in multi-omic paired-tag dataset. Overall, IDclust automates single-cell exploration, facilitates cell type annotation and provides a biologically interpretable basis for clustering.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae174"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing diversity of single-cell datasets require systematic cell type characterization. Clustering is a critical step in single-cell analysis, heavily influencing downstream analyses. However, current unsupervised clustering algorithms rely on biologically irrelevant parameters that require manual optimization and fail to capture hierarchical relationships between clusters. We developed IDclust, a framework that identifies clusters with significant biological features at multiple resolutions using biologically meaningful thresholds like fold change, adjusted P-value and fraction of expressing cells. By iteratively processing and clustering subsets of the dataset, IDclust guarantees that all clusters found have significantly different features and stops only when no more interpretable cluster is found. It also creates a hierarchy of clusters, enabling visualization of the hierarchical relationships between different clusters. Analyzing multiple single-cell transcriptomic reference datasets, IDclust achieves superior clustering accuracy compared to state of the art algorithms. We showcase its utility by identifying previously unannotated clusters and identifying branching patterns in scATAC datasets. Using it's unsupervised nature and ability to analyze different -omics, we compare the resolution of different histone marks in multi-omic paired-tag dataset. Overall, IDclust automates single-cell exploration, facilitates cell type annotation and provides a biologically interpretable basis for clustering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信