Improving cross-domain generalizability of medical image segmentation using uncertainty and shape-aware continual test-time domain adaptation.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiayi Zhu, Bart Bolsterlee, Yang Song, Erik Meijering
{"title":"Improving cross-domain generalizability of medical image segmentation using uncertainty and shape-aware continual test-time domain adaptation.","authors":"Jiayi Zhu, Bart Bolsterlee, Yang Song, Erik Meijering","doi":"10.1016/j.media.2024.103422","DOIUrl":null,"url":null,"abstract":"<p><p>Continual test-time adaptation (CTTA) aims to continuously adapt a source-trained model to a target domain with minimal performance loss while assuming no access to the source data. Typically, source models are trained with empirical risk minimization (ERM) and assumed to perform reasonably on the target domain to allow for further adaptation. However, ERM-trained models often fail to perform adequately on a severely drifted target domain, resulting in unsatisfactory adaptation results. To tackle this issue, we propose a generalizable CTTA framework. First, we incorporate domain-invariant shape modeling into the model and train it using domain-generalization (DG) techniques, promoting target-domain adaptability regardless of the severity of the domain shift. Then, an uncertainty and shape-aware mean teacher network performs adaptation with uncertainty-weighted pseudo-labels and shape information. As part of this process, a novel uncertainty-ranked cross-task regularization scheme is proposed to impose consistency between segmentation maps and their corresponding shape representations, both produced by the student model, at the patch and global levels to enhance performance further. Lastly, small portions of the model's weights are stochastically reset to the initial domain-generalized state at each adaptation step, preventing the model from 'diving too deep' into any specific test samples. The proposed method demonstrates strong continual adaptability and outperforms its peers on five cross-domain segmentation tasks, showcasing its effectiveness and generalizability.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103422"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103422","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Continual test-time adaptation (CTTA) aims to continuously adapt a source-trained model to a target domain with minimal performance loss while assuming no access to the source data. Typically, source models are trained with empirical risk minimization (ERM) and assumed to perform reasonably on the target domain to allow for further adaptation. However, ERM-trained models often fail to perform adequately on a severely drifted target domain, resulting in unsatisfactory adaptation results. To tackle this issue, we propose a generalizable CTTA framework. First, we incorporate domain-invariant shape modeling into the model and train it using domain-generalization (DG) techniques, promoting target-domain adaptability regardless of the severity of the domain shift. Then, an uncertainty and shape-aware mean teacher network performs adaptation with uncertainty-weighted pseudo-labels and shape information. As part of this process, a novel uncertainty-ranked cross-task regularization scheme is proposed to impose consistency between segmentation maps and their corresponding shape representations, both produced by the student model, at the patch and global levels to enhance performance further. Lastly, small portions of the model's weights are stochastically reset to the initial domain-generalized state at each adaptation step, preventing the model from 'diving too deep' into any specific test samples. The proposed method demonstrates strong continual adaptability and outperforms its peers on five cross-domain segmentation tasks, showcasing its effectiveness and generalizability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信