AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chunming Li, Yuchuan Qiao, Wei Yu, Yingguang Li, Yankai Chen, Zehao Fan, Runguo Wei, Botao Yang, Zhiqing Wang, Xuesong Lu, Lianglong Chen, Carlos Collet, Miao Chu, Shengxian Tu
{"title":"AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT.","authors":"Chunming Li, Yuchuan Qiao, Wei Yu, Yingguang Li, Yankai Chen, Zehao Fan, Runguo Wei, Botao Yang, Zhiqing Wang, Xuesong Lu, Lianglong Chen, Carlos Collet, Miao Chu, Shengxian Tu","doi":"10.1016/j.media.2024.103432","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease (CAD) is the leading cause of death globally. The 3D fusion of coronary X-ray angiography (XA) and optical coherence tomography (OCT) provides complementary information to appreciate coronary anatomy and plaque morphology. This significantly improve CAD diagnosis and prognosis by enabling precise hemodynamic and computational physiology assessments. The challenges of fusion lie in the potential misalignment caused by the foreshortening effect in XA and non-uniform acquisition of OCT pullback. Moreover, the need for reconstructions of major bifurcations is technically demanding. This paper proposed an automated 3D fusion framework AutoFOX, which consists of deep learning model TransCAN for 3D vessel alignment. The 3D vessel contours are processed as sequential data, whose features are extracted and integrated with bifurcation information to enhance alignment via a multi-task fashion. TransCAN shows the highest alignment accuracy among all methods with a mean alignment error of 0.99 ± 0.81 mm along the vascular sequence, and only 0.82 ± 0.69 mm at key anatomical positions. The proposed AutoFOX framework uniquely employs an advanced side branch lumen reconstruction algorithm to enhance the assessment of bifurcation lesions. A multi-center dataset is utilized for independent external validation, using the paired 3D coronary computer tomography angiography (CTA) as the reference standard. Novel morphological metrics are proposed to evaluate the fusion accuracy. Our experiments show that the fusion model generated by AutoFOX exhibits high morphological consistency with CTA. AutoFOX framework enables automatic and comprehensive assessment of CAD, especially for the accurate assessment of bifurcation stenosis, which is of clinical value to guiding procedure and optimization.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103432"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103432","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Coronary artery disease (CAD) is the leading cause of death globally. The 3D fusion of coronary X-ray angiography (XA) and optical coherence tomography (OCT) provides complementary information to appreciate coronary anatomy and plaque morphology. This significantly improve CAD diagnosis and prognosis by enabling precise hemodynamic and computational physiology assessments. The challenges of fusion lie in the potential misalignment caused by the foreshortening effect in XA and non-uniform acquisition of OCT pullback. Moreover, the need for reconstructions of major bifurcations is technically demanding. This paper proposed an automated 3D fusion framework AutoFOX, which consists of deep learning model TransCAN for 3D vessel alignment. The 3D vessel contours are processed as sequential data, whose features are extracted and integrated with bifurcation information to enhance alignment via a multi-task fashion. TransCAN shows the highest alignment accuracy among all methods with a mean alignment error of 0.99 ± 0.81 mm along the vascular sequence, and only 0.82 ± 0.69 mm at key anatomical positions. The proposed AutoFOX framework uniquely employs an advanced side branch lumen reconstruction algorithm to enhance the assessment of bifurcation lesions. A multi-center dataset is utilized for independent external validation, using the paired 3D coronary computer tomography angiography (CTA) as the reference standard. Novel morphological metrics are proposed to evaluate the fusion accuracy. Our experiments show that the fusion model generated by AutoFOX exhibits high morphological consistency with CTA. AutoFOX framework enables automatic and comprehensive assessment of CAD, especially for the accurate assessment of bifurcation stenosis, which is of clinical value to guiding procedure and optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信