Peter F Worcester, Matthew A Dzieciuch, John A Colosi, Richard A Krishfield, Heriberto J Vazquez, John N Kemp
{"title":"Transmission loss of surface-reflected ray arrivals underneath seasonally varying sea ice in the Canada Basin during 2016-2017.","authors":"Peter F Worcester, Matthew A Dzieciuch, John A Colosi, Richard A Krishfield, Heriberto J Vazquez, John N Kemp","doi":"10.1121/10.0034618","DOIUrl":null,"url":null,"abstract":"<p><p>During the 2016-2017 Canada Basin Acoustic Propagation Experiment, an ocean acoustic tomography array with a radius of 150 km measured the impulse responses of the ocean every 4 hr at a variety of ranges and bearings using broadband signals with center frequencies from 172.5 to 275 Hz. Ice-profiling sonar data showed a gradual increase in ice draft over the winter with daily median ice drafts reaching maxima of about 1.5 m and daily standard deviations reaching maxima of about 1.2 m. The travel-time variability of early, resolved arrivals from refracted-surface-reflected rays with lower turning depths below 500 m was reported in a previous paper [Worcester et al. (2023). J. Acoust. Soc. Am. 153, 2621-2636]. Here, the transmission loss of these same ray arrivals is analyzed. The transmission loss was lowest when open water was present and increased as the ice draft increased. The excess transmission loss per surface reflection, defined as the increase in transmission loss relative to open water conditions, increased with center frequency and surface grazing angle. The combination of transmission loss measurements for resolved ray arrivals and ice drafts from the ice-profiling sonars provides an excellent dataset for testing ice-scattering models.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4181-4192"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034618","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
During the 2016-2017 Canada Basin Acoustic Propagation Experiment, an ocean acoustic tomography array with a radius of 150 km measured the impulse responses of the ocean every 4 hr at a variety of ranges and bearings using broadband signals with center frequencies from 172.5 to 275 Hz. Ice-profiling sonar data showed a gradual increase in ice draft over the winter with daily median ice drafts reaching maxima of about 1.5 m and daily standard deviations reaching maxima of about 1.2 m. The travel-time variability of early, resolved arrivals from refracted-surface-reflected rays with lower turning depths below 500 m was reported in a previous paper [Worcester et al. (2023). J. Acoust. Soc. Am. 153, 2621-2636]. Here, the transmission loss of these same ray arrivals is analyzed. The transmission loss was lowest when open water was present and increased as the ice draft increased. The excess transmission loss per surface reflection, defined as the increase in transmission loss relative to open water conditions, increased with center frequency and surface grazing angle. The combination of transmission loss measurements for resolved ray arrivals and ice drafts from the ice-profiling sonars provides an excellent dataset for testing ice-scattering models.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.