The projected impacts of climate change and fishing pressure on a tropical marine food web.

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ronaldo Angelini, Maria Alice Leite Lima, Alex Souza Lira, Flávia Lucena-Frédou, Thierry Frédou, Arnaud Bertrand, Tommaso Giarrizzo, Jeroen Steenbeek, Marta Coll, Friedrich Wolfgang Keppeler
{"title":"The projected impacts of climate change and fishing pressure on a tropical marine food web.","authors":"Ronaldo Angelini, Maria Alice Leite Lima, Alex Souza Lira, Flávia Lucena-Frédou, Thierry Frédou, Arnaud Bertrand, Tommaso Giarrizzo, Jeroen Steenbeek, Marta Coll, Friedrich Wolfgang Keppeler","doi":"10.1016/j.marenvres.2024.106909","DOIUrl":null,"url":null,"abstract":"<p><p>Small-scale fisheries, especially those from developing countries, are vital for millions. Understanding the impact of environmental and human factors on fish stocks and yields and how they might change is crucial to ensure the sustainable use of aquatic resources. We developed an ecosystem model using Ecopath and Ecosim (EwE) to investigate changes in target species biomass and ecosystem attributes over 83 years (2017-2100) caused by different scenarios of fishing pressure and ocean warming in the Brazilian Northeastern continental shelf. The simulations considered three IPCC climate change scenarios (RCP2.6 [0.42 °C], RCP4.5 [1.53 °C], and RCP8.5 [4.02 °C]) and four fishing pressure scenarios: two with increased pressure (10% and 30%) and two with decreased pressure (-10% and -30%). The Ecopath model indicated that the Brazilian Northeastern continental shelf ecosystem is a grazing-based system with high biomass in macroalgae and detritus compartments, supporting a diverse community of consumers. Our simulations projected overall reductions in the biomass of target species, mainly under extreme climate change. Increasing temperatures and fishing efforts reduced the biomass of large predatory species and the food web length in several scenarios. Although projected changes in ecological network and information metrics were of lower magnitude, results predicted declines in production/respiration ratio, material cycling, and ascendency (variable related to trophic specialization, internalization, and material cycling) with climate change. These declines were likely linked to increased respiration rates, metabolic costs, and lower trophic efficiency with elevated temperatures. Together, our results show how climate change and fishing pressure can change the structure of coastal ecosystems, potentially leading to undesirable alternative states for fisheries. Our approach demonstrates the effectiveness of ecosystem-based modeling in projecting likely trajectories of change, which can be especially useful for resource management in data-limited conditions.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106909"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106909","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Small-scale fisheries, especially those from developing countries, are vital for millions. Understanding the impact of environmental and human factors on fish stocks and yields and how they might change is crucial to ensure the sustainable use of aquatic resources. We developed an ecosystem model using Ecopath and Ecosim (EwE) to investigate changes in target species biomass and ecosystem attributes over 83 years (2017-2100) caused by different scenarios of fishing pressure and ocean warming in the Brazilian Northeastern continental shelf. The simulations considered three IPCC climate change scenarios (RCP2.6 [0.42 °C], RCP4.5 [1.53 °C], and RCP8.5 [4.02 °C]) and four fishing pressure scenarios: two with increased pressure (10% and 30%) and two with decreased pressure (-10% and -30%). The Ecopath model indicated that the Brazilian Northeastern continental shelf ecosystem is a grazing-based system with high biomass in macroalgae and detritus compartments, supporting a diverse community of consumers. Our simulations projected overall reductions in the biomass of target species, mainly under extreme climate change. Increasing temperatures and fishing efforts reduced the biomass of large predatory species and the food web length in several scenarios. Although projected changes in ecological network and information metrics were of lower magnitude, results predicted declines in production/respiration ratio, material cycling, and ascendency (variable related to trophic specialization, internalization, and material cycling) with climate change. These declines were likely linked to increased respiration rates, metabolic costs, and lower trophic efficiency with elevated temperatures. Together, our results show how climate change and fishing pressure can change the structure of coastal ecosystems, potentially leading to undesirable alternative states for fisheries. Our approach demonstrates the effectiveness of ecosystem-based modeling in projecting likely trajectories of change, which can be especially useful for resource management in data-limited conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信