{"title":"Transplantation of Islet Organoids into Brown Adipose Tissue in a Diabetic Mouse Model.","authors":"Aixia Sun, Mankirat Singh, Manvir Bamrah, Wen Li, Aitor Aguirre, Ping Wang","doi":"10.1007/7651_2024_588","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic islet transplantation is a promising cell replacement therapy for patients with type 1 diabetes (T1D), an autoimmune disease that destroys insulin-producing islet β cells. However, the shortage of donor pancreatic islets significantly limits the widespread use of this strategy as a routine therapy. Pluripotent stem cell-derived insulin-producing islet organoids present a promising alternative β cell source for T1D patients. One critical challenge is the lack of vascularization in islet organoids, making it essential to investigate vascularized transplantation sites to support their survival. Brown adipose tissue (BAT) is well vascularized and secretes active cytokines, facilitating islet organoid survival. Thus, BAT represents a promising transplantation site for islet organoids, making it an ideal location to support cell replacement therapies and improve treatment approaches for T1D. Here, we describe the methods for transplanting human-induced pluripotent stem cell (iPSC)-derived islet organoids into the BAT of a mouse model.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic islet transplantation is a promising cell replacement therapy for patients with type 1 diabetes (T1D), an autoimmune disease that destroys insulin-producing islet β cells. However, the shortage of donor pancreatic islets significantly limits the widespread use of this strategy as a routine therapy. Pluripotent stem cell-derived insulin-producing islet organoids present a promising alternative β cell source for T1D patients. One critical challenge is the lack of vascularization in islet organoids, making it essential to investigate vascularized transplantation sites to support their survival. Brown adipose tissue (BAT) is well vascularized and secretes active cytokines, facilitating islet organoid survival. Thus, BAT represents a promising transplantation site for islet organoids, making it an ideal location to support cell replacement therapies and improve treatment approaches for T1D. Here, we describe the methods for transplanting human-induced pluripotent stem cell (iPSC)-derived islet organoids into the BAT of a mouse model.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.