Identification of novel inhibitors of cancer target telomerase using a dual structure-based pharmacophore approach to virtually screen libraries, molecular docking and validation by molecular dynamics simulations.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Divpreet Kaur, Daman Saluja, Madhu Chopra
{"title":"Identification of novel inhibitors of cancer target telomerase using a dual structure-based pharmacophore approach to virtually screen libraries, molecular docking and validation by molecular dynamics simulations.","authors":"Divpreet Kaur, Daman Saluja, Madhu Chopra","doi":"10.1080/07391102.2024.2443130","DOIUrl":null,"url":null,"abstract":"<p><p>In about 85% of cancer malignancies, replicative immortality caused by increased telomerase activity makes it an attractive target for developing anticancer therapeutics. However, the lack of approved small-molecule inhibitors rooted in the structural ambiguity of telomerase has impeded drug development for decades. In this study, we have exploited the FVYL pocket in the thumb domain, which plays a key role in the enzyme's processivity. Due to the unavailability of a co-crystalized structure of BIBR1532 with the catalytic hTERT thumb domain, we utilized the molecular dynamics method to identify the precise binding site of the inhibitor. Two pharmacophore models were generated and validated for the putative (Site-I) and newly identified (Site-II) binding pockets which were screened virtually through the ChemDiv anticancer library, Otava drug-like green collection to identify novel lead compounds, and Binding database to screen out thumb domain-specific telomerase inhibitors. The top hits obtained were filtered using drug-likeliness parameters followed by redocking using a three-level screening strategy into their binding site. The structural investigation, molecular docking studies, and confirmatory molecular dynamics revealed that the exact binding site of BIBR1532 is away from the reported FVYL pocket with characteristic interactions conserved. Subsequently, the lead compounds with the highest docking scores and significant interactions in the newly discovered extended FVYL pocket were validated using 100 ns MD simulations. Additionally, cross-validated binding free energy calculations were performed using MM-PB(GB)SA methods followed by PCA and FEL characterization. The identified top lead compounds can be validated <i>in vitro</i> and taken forward for anticancer drug development.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-24"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2443130","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In about 85% of cancer malignancies, replicative immortality caused by increased telomerase activity makes it an attractive target for developing anticancer therapeutics. However, the lack of approved small-molecule inhibitors rooted in the structural ambiguity of telomerase has impeded drug development for decades. In this study, we have exploited the FVYL pocket in the thumb domain, which plays a key role in the enzyme's processivity. Due to the unavailability of a co-crystalized structure of BIBR1532 with the catalytic hTERT thumb domain, we utilized the molecular dynamics method to identify the precise binding site of the inhibitor. Two pharmacophore models were generated and validated for the putative (Site-I) and newly identified (Site-II) binding pockets which were screened virtually through the ChemDiv anticancer library, Otava drug-like green collection to identify novel lead compounds, and Binding database to screen out thumb domain-specific telomerase inhibitors. The top hits obtained were filtered using drug-likeliness parameters followed by redocking using a three-level screening strategy into their binding site. The structural investigation, molecular docking studies, and confirmatory molecular dynamics revealed that the exact binding site of BIBR1532 is away from the reported FVYL pocket with characteristic interactions conserved. Subsequently, the lead compounds with the highest docking scores and significant interactions in the newly discovered extended FVYL pocket were validated using 100 ns MD simulations. Additionally, cross-validated binding free energy calculations were performed using MM-PB(GB)SA methods followed by PCA and FEL characterization. The identified top lead compounds can be validated in vitro and taken forward for anticancer drug development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信