{"title":"Development and application of a novel scintillation gel-based 3D dosimetry system for radiotherapy.","authors":"Hua Li, Haijing Jin, Liang He, Xuewen Yan, Hui Zhang, Deyuan Li","doi":"10.1002/acm2.14615","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study introduced a novel 3D dosimetry system for radiotherapy in order to address the limitations of traditional quality assurance methods in precision radiotherapy techniques.</p><p><strong>Methods: </strong>The research required the use of scintillation material, optical measurements, and a dose reconstruction algorithm. The scintillation material, which mimics human soft tissue characteristics, served as a both physical phantom and a radiation detector. The dose distribution inside the scintillator can be converted to light distributions, which were measured by optical cameras from different angles and manifested as pixel values. The proposed dose reconstruction algorithm, LASSO-TV, effectively reconstructed the dose distribution from pixel values, overcoming challenges such as limited projection directions and large-scale matrices.</p><p><strong>Results: </strong>Various clinical plans were tested and validated, including a modified segment from the SBRT plan and IMRT clinical plan. The dosimetry system can execute full 3D dose determinations as a function of time with a spatial resolution of 1-2 mm, enabling high-resolution measurements for dynamic dose distribution. Comparative analysis with mainstream device MapCHECK2 confirmed the accuracy of the system, with a relative measurement error of within 5%.</p><p><strong>Conclusions: </strong>Testing and validation results demonstrated the dosimetry system's promising potential for dynamic treatment quality assurance.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14615"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14615","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study introduced a novel 3D dosimetry system for radiotherapy in order to address the limitations of traditional quality assurance methods in precision radiotherapy techniques.
Methods: The research required the use of scintillation material, optical measurements, and a dose reconstruction algorithm. The scintillation material, which mimics human soft tissue characteristics, served as a both physical phantom and a radiation detector. The dose distribution inside the scintillator can be converted to light distributions, which were measured by optical cameras from different angles and manifested as pixel values. The proposed dose reconstruction algorithm, LASSO-TV, effectively reconstructed the dose distribution from pixel values, overcoming challenges such as limited projection directions and large-scale matrices.
Results: Various clinical plans were tested and validated, including a modified segment from the SBRT plan and IMRT clinical plan. The dosimetry system can execute full 3D dose determinations as a function of time with a spatial resolution of 1-2 mm, enabling high-resolution measurements for dynamic dose distribution. Comparative analysis with mainstream device MapCHECK2 confirmed the accuracy of the system, with a relative measurement error of within 5%.
Conclusions: Testing and validation results demonstrated the dosimetry system's promising potential for dynamic treatment quality assurance.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic