Yunpeng Liu , Muhua Chen , Xiang-Xu Wang , Yuan Gao , Xiao Han , Shuning Wang , Wangqian Zhang , Xiaoying Lei , Pengfei Yu , Lei Liu , Hong-Mei Zhang , Kuo Zhang
{"title":"Targeting METTL8 with Rabdosiin overcomes lenvatinib resistance in hepatocellular carcinoma","authors":"Yunpeng Liu , Muhua Chen , Xiang-Xu Wang , Yuan Gao , Xiao Han , Shuning Wang , Wangqian Zhang , Xiaoying Lei , Pengfei Yu , Lei Liu , Hong-Mei Zhang , Kuo Zhang","doi":"10.1016/j.yexcr.2024.114389","DOIUrl":null,"url":null,"abstract":"<div><div>In hepatocellular carcinoma (HCC), lenvatinib is a key first-line treatment that significantly improves survival in some patients with advanced stage. However, lenvatinib resistance presents a major clinical challenge. This study aims to identify key molecular factors driving lenvatinib resistance in HCC and propose intervention strategies to overcome this resistance, thereby enhancing therapeutic efficacy. A genome-wide CRISPR-Cas9 activation screen identified METTL8 as a crucial gene associated with lenvatinib resistance. Validation through <em>in vitro</em> and <em>in vivo</em> assays confirmed METTL8's role in mediating lenvatinib resistance. Higher METTL8 expression was observed in lenvatinib-resistant HCC cells compared to parental cells. Immunohistochemical staining of tissue sections from HCC patients revealed a negative correlation between high METTL8 expression and lenvatinib sensitivity. To inhibit the function of METTL8 that mediate lenvatinib resistance, we conducted a screening using a natural compound library, virtual drug screening identified Rabdosiin as a potential METTL8 inhibitor, subsequent experiments demonstrated that Rabdosiin could effectively overcome METTL8-mediated lenvatinib resistance. In conclusion, this research highlights METTL8 as a novel target for mitigating lenvatinib resistance, proposing that targeting METTL8 could restore lenvatinib sensitivity in HCC, and underscores its value as a biomarker for lenvatinib application in clinical settings.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"444 2","pages":"Article 114389"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724004804","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In hepatocellular carcinoma (HCC), lenvatinib is a key first-line treatment that significantly improves survival in some patients with advanced stage. However, lenvatinib resistance presents a major clinical challenge. This study aims to identify key molecular factors driving lenvatinib resistance in HCC and propose intervention strategies to overcome this resistance, thereby enhancing therapeutic efficacy. A genome-wide CRISPR-Cas9 activation screen identified METTL8 as a crucial gene associated with lenvatinib resistance. Validation through in vitro and in vivo assays confirmed METTL8's role in mediating lenvatinib resistance. Higher METTL8 expression was observed in lenvatinib-resistant HCC cells compared to parental cells. Immunohistochemical staining of tissue sections from HCC patients revealed a negative correlation between high METTL8 expression and lenvatinib sensitivity. To inhibit the function of METTL8 that mediate lenvatinib resistance, we conducted a screening using a natural compound library, virtual drug screening identified Rabdosiin as a potential METTL8 inhibitor, subsequent experiments demonstrated that Rabdosiin could effectively overcome METTL8-mediated lenvatinib resistance. In conclusion, this research highlights METTL8 as a novel target for mitigating lenvatinib resistance, proposing that targeting METTL8 could restore lenvatinib sensitivity in HCC, and underscores its value as a biomarker for lenvatinib application in clinical settings.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.