Graph convolution networks model identifies and quantifies gene and cancer specific transcriptome signatures of cancer driver events.

IF 7 2区 医学 Q1 BIOLOGY
Gil Ben Cohen, Adar Yaacov, Yishai Ben Zvi, Ranel Loutati, Natan Lishinsky, Jakob Landau, Tom Hope, Aron Popovzter, Shai Rosenberg
{"title":"Graph convolution networks model identifies and quantifies gene and cancer specific transcriptome signatures of cancer driver events.","authors":"Gil Ben Cohen, Adar Yaacov, Yishai Ben Zvi, Ranel Loutati, Natan Lishinsky, Jakob Landau, Tom Hope, Aron Popovzter, Shai Rosenberg","doi":"10.1016/j.compbiomed.2024.109491","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The identification and drug targeting of cancer causing (driver) genetic alterations has seen immense improvement in recent years, with many new targeted therapies developed. However, identifying, prioritizing, and treating genetic alterations is insufficient for most cancer patients. Current clinical practices rely mainly on DNA level mutational analyses, which in many cases fail to identify treatable driver events. Arguably, signal strength may determine cell fate more than the mutational status that initiated it. The use of transcriptomics, a complex and highly informative representation of cellular and tumor state, had been suggested to enhance diagnostics and treatment successes. A gene-expression based model trained over known genetic alterations could improve identification and quantification of cancer related biological aberrations' signal strength.</p><p><strong>Methods: </strong>We present STAMP (Signatures in Transcriptome Associated with Mutated Protein), a Graph Convolution Networks (GCN) based framework for the identification of gene expression signatures related to cancer driver events. STAMP was trained to identify the p53 dysfunction of cancer samples from gene expression, utilizing comprehensive curated graph structures of gene interactions. Predictions were modified for generating a quantitative score to rank the severity of a driver event in each sample. STAMP was then extended to almost 300 tumor type-specific predictive models for important cancer genes/pathways, by training to identify well-established driver events' annotations from the literature.</p><p><strong>Results: </strong>STAMP achieved very high AUC on unseen data across several tumor types and on an independent cohort. The framework was validated on p53 related genetic and clinical characteristics, including the effect of Variants of Unknown Significance, and showed strong correlation with protein function. For genes and tumor types where targeted therapy is available, STAMP showed correlation with drugs sensitivity (IC50) in an independent cell line database. It managed to stratify drug effect on samples with similar mutational profiles. STAMP was validated for drug-response prediction in clinical patients' cohorts, improving over a state-of-the-art method and suggesting potential biomarkers for cancer treatments.</p><p><strong>Conclusions: </strong>The STAMP models provide a learning framework that successfully identifies and quantifies driver events' signal strength, showing utility in portraying the molecular landscape of tumors based on transcriptomics. Importantly, STAMP manifested the ability to improve targeted therapy selection and hence can contribute to better treatment.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109491"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The identification and drug targeting of cancer causing (driver) genetic alterations has seen immense improvement in recent years, with many new targeted therapies developed. However, identifying, prioritizing, and treating genetic alterations is insufficient for most cancer patients. Current clinical practices rely mainly on DNA level mutational analyses, which in many cases fail to identify treatable driver events. Arguably, signal strength may determine cell fate more than the mutational status that initiated it. The use of transcriptomics, a complex and highly informative representation of cellular and tumor state, had been suggested to enhance diagnostics and treatment successes. A gene-expression based model trained over known genetic alterations could improve identification and quantification of cancer related biological aberrations' signal strength.

Methods: We present STAMP (Signatures in Transcriptome Associated with Mutated Protein), a Graph Convolution Networks (GCN) based framework for the identification of gene expression signatures related to cancer driver events. STAMP was trained to identify the p53 dysfunction of cancer samples from gene expression, utilizing comprehensive curated graph structures of gene interactions. Predictions were modified for generating a quantitative score to rank the severity of a driver event in each sample. STAMP was then extended to almost 300 tumor type-specific predictive models for important cancer genes/pathways, by training to identify well-established driver events' annotations from the literature.

Results: STAMP achieved very high AUC on unseen data across several tumor types and on an independent cohort. The framework was validated on p53 related genetic and clinical characteristics, including the effect of Variants of Unknown Significance, and showed strong correlation with protein function. For genes and tumor types where targeted therapy is available, STAMP showed correlation with drugs sensitivity (IC50) in an independent cell line database. It managed to stratify drug effect on samples with similar mutational profiles. STAMP was validated for drug-response prediction in clinical patients' cohorts, improving over a state-of-the-art method and suggesting potential biomarkers for cancer treatments.

Conclusions: The STAMP models provide a learning framework that successfully identifies and quantifies driver events' signal strength, showing utility in portraying the molecular landscape of tumors based on transcriptomics. Importantly, STAMP manifested the ability to improve targeted therapy selection and hence can contribute to better treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信