Enrichment mechanism and probabilistic health risk assessment of high-fluoride groundwater in Gaomi City, China.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Jialiang Li, Jierui Dai, Liyuan Yang, Hongjin Wang
{"title":"Enrichment mechanism and probabilistic health risk assessment of high-fluoride groundwater in Gaomi City, China.","authors":"Jialiang Li, Jierui Dai, Liyuan Yang, Hongjin Wang","doi":"10.1007/s10653-024-02308-5","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoride (F) is the most important inorganic pollutant in groundwater that affects human health, and analyzing the causes of high-fluoride groundwater is a prerequisite for protecting the health of residents. To comprehensively understand the enrichment characteristics of groundwater in the high-fluoride areas, this study systematically investigated the concentrations of fluoride in Gaomi City, a typical study area in the Jiaolai Plain and explored the spatiotemporal distribution patterns, enrichment mechanisms, and the probabilistic health risk associated with F<sup>-</sup>. The results indicate that there is serious fluorine pollution in groundwater, which is mainly concentrated in the alluvial plain in the north and affected by topographical and aquifer characteristics. Favorable runoff conditions effectively improve the fluoride status of shallow groundwater on both sides of rivers and in hilly areas. Hydrogeochemical methods reveal the mechanism of fluoride enrichment. The relative contributions rates of different hydrogeochemical processes to the fluoride enrichment are as follows: dissolution and precipitation (39.02%) > cation exchange (25.25%) > competitive adsorption (19.48%) > seawater intrusion (3.14%) > evaporative and concentration (1.99%). Health risk assessment based on Monte Carlo simulation shows that health risk susceptibilities of different populations are infants (76.07%), children (66.59%), teenagers (44.54%), and adults (5.68%), respectively. In addition, targeted management suggestions are put forward regarding the enrichment mechanisms of fluoride in groundwater and its impact on health. These findings have significant implications for controlling regional diffuse F<sup>-</sup> contamination in groundwater, protecting public health, and promoting social development in regions with a high risk of groundwater fluoride contamination.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"26"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02308-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluoride (F) is the most important inorganic pollutant in groundwater that affects human health, and analyzing the causes of high-fluoride groundwater is a prerequisite for protecting the health of residents. To comprehensively understand the enrichment characteristics of groundwater in the high-fluoride areas, this study systematically investigated the concentrations of fluoride in Gaomi City, a typical study area in the Jiaolai Plain and explored the spatiotemporal distribution patterns, enrichment mechanisms, and the probabilistic health risk associated with F-. The results indicate that there is serious fluorine pollution in groundwater, which is mainly concentrated in the alluvial plain in the north and affected by topographical and aquifer characteristics. Favorable runoff conditions effectively improve the fluoride status of shallow groundwater on both sides of rivers and in hilly areas. Hydrogeochemical methods reveal the mechanism of fluoride enrichment. The relative contributions rates of different hydrogeochemical processes to the fluoride enrichment are as follows: dissolution and precipitation (39.02%) > cation exchange (25.25%) > competitive adsorption (19.48%) > seawater intrusion (3.14%) > evaporative and concentration (1.99%). Health risk assessment based on Monte Carlo simulation shows that health risk susceptibilities of different populations are infants (76.07%), children (66.59%), teenagers (44.54%), and adults (5.68%), respectively. In addition, targeted management suggestions are put forward regarding the enrichment mechanisms of fluoride in groundwater and its impact on health. These findings have significant implications for controlling regional diffuse F- contamination in groundwater, protecting public health, and promoting social development in regions with a high risk of groundwater fluoride contamination.

中国高密市高氟地下水富集机理与健康风险概率评估。
氟化物(F)是影响人体健康的地下水中最重要的无机污染物,分析地下水高氟的成因是保障居民健康的前提。为全面了解高氟区地下水富集特征,本研究对胶莱平原典型研究区高密市的氟化物浓度进行了系统调查,探讨了氟化物的时空分布格局、富集机制以及与F-相关的概率健康风险。结果表明:地下水氟污染严重,主要集中在北部冲积平原,受地形和含水层特征的影响。有利的径流条件有效地改善了河流两岸和丘陵地区浅层地下水的氟化物状况。水文地球化学方法揭示了氟化物富集的机理。不同水文地球化学过程对氟富集的相对贡献率为:溶解和沉淀(39.02%)>阳离子交换(25.25%)>竞争吸附(19.48%)>海水入侵(3.14%)>蒸发和浓度(1.99%)。基于Monte Carlo模拟的健康风险评估结果显示,不同人群的健康风险易感性分别为婴儿(76.07%)、儿童(66.59%)、青少年(44.54%)和成人(5.68%)。此外,针对地下水中氟的富集机理及其对健康的影响,提出了针对性的管理建议。研究结果对地下水氟污染高发区控制区域弥漫性氟污染、保护公众健康、促进社会发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信