Yuening Zhong, Yibo Zhang, Qiyue Meng, Haoyu Zhang, Zhenbing Wu, Chenyuan Dang, Jie Fu
{"title":"Chlorine disinfectant significantly changed microfauna habitat, community structure, and colonization mode in wastewater treatment plants.","authors":"Yuening Zhong, Yibo Zhang, Qiyue Meng, Haoyu Zhang, Zhenbing Wu, Chenyuan Dang, Jie Fu","doi":"10.1128/aem.01517-24","DOIUrl":null,"url":null,"abstract":"<p><p>During the coronavirus disease 2019 epidemic, excessive chlorine disinfectants have been used to block the spread of severe acute respiratory syndrome-coronavirus 2, resulting in large amounts of residual disinfectants entering wastewater treatment plants (WWTPs) through sewage systems. So far, no relevant research has been conducted on the impact of chlorine disinfectants on microfauna, an important microbial component in activated sludge treatment systems. This study comprehensively investigated the changes in microfauna habitat, community structure, and colonization mode under the chlorine stress by combining the full-scale WWTP survey and laboratory-scale sequencing batch reactor experiments. The results showed that chlorine disinfectants significantly changed the community structure of microfauna, including decrease in sedentary ciliates and increase in free-living ciliates, amoebas, and flagellates. Besides the disinfection effect of chlorine disinfectants, the microfauna community was also influenced by changes in habitat and bacterial community. The loose structure and excessive extracellular polymeric substance (EPS) of activated sludge caused by chlorination would impact the colonization of sedentary ciliates, while it was conducive to the survival of free-living ciliates due to their predation on EPS as the nutrients. Bacteria in the activated sludge had strong interactions with protozoa, and their changes under chlorine stress directly affected the protozoan community and even indirectly affected the micro-metazoa community through the food chain.</p><p><strong>Importance: </strong>This study revealed that chlorine disinfectant significantly changed microfauna habitat, community structure, and colonization mode in wastewater treatment plants during the coronavirus disease 2019 pandemic. Chlorine disinfectant could destroy the structure and stability of sludge flocs, reduce the abundance of beneficial microfauna in activated sludge, and even affect the colonization of sedentary ciliates on sludge. In addition, chlorine disinfectants might induce environmental and ecological risks related to microfauna, such as elevated suspended solids and release of bacteria and microfauna in the effluents.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0151724"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01517-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the coronavirus disease 2019 epidemic, excessive chlorine disinfectants have been used to block the spread of severe acute respiratory syndrome-coronavirus 2, resulting in large amounts of residual disinfectants entering wastewater treatment plants (WWTPs) through sewage systems. So far, no relevant research has been conducted on the impact of chlorine disinfectants on microfauna, an important microbial component in activated sludge treatment systems. This study comprehensively investigated the changes in microfauna habitat, community structure, and colonization mode under the chlorine stress by combining the full-scale WWTP survey and laboratory-scale sequencing batch reactor experiments. The results showed that chlorine disinfectants significantly changed the community structure of microfauna, including decrease in sedentary ciliates and increase in free-living ciliates, amoebas, and flagellates. Besides the disinfection effect of chlorine disinfectants, the microfauna community was also influenced by changes in habitat and bacterial community. The loose structure and excessive extracellular polymeric substance (EPS) of activated sludge caused by chlorination would impact the colonization of sedentary ciliates, while it was conducive to the survival of free-living ciliates due to their predation on EPS as the nutrients. Bacteria in the activated sludge had strong interactions with protozoa, and their changes under chlorine stress directly affected the protozoan community and even indirectly affected the micro-metazoa community through the food chain.
Importance: This study revealed that chlorine disinfectant significantly changed microfauna habitat, community structure, and colonization mode in wastewater treatment plants during the coronavirus disease 2019 pandemic. Chlorine disinfectant could destroy the structure and stability of sludge flocs, reduce the abundance of beneficial microfauna in activated sludge, and even affect the colonization of sedentary ciliates on sludge. In addition, chlorine disinfectants might induce environmental and ecological risks related to microfauna, such as elevated suspended solids and release of bacteria and microfauna in the effluents.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.