Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in Salmonella enterica Strains.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Bioinformatics and Biology Insights Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.1177/11779322241307984
Tina Fallah, Morvarid Shafiei
{"title":"Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in <i>Salmonella enterica</i> Strains.","authors":"Tina Fallah, Morvarid Shafiei","doi":"10.1177/11779322241307984","DOIUrl":null,"url":null,"abstract":"<p><p><i>Salmonella enterica</i> is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in <i>S. enterica</i> is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 <i>S. enterica</i> genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (<i>P</i>-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in <i>Cas3</i>-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing <i>S. enterica</i> strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241307984"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241307984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Salmonella enterica is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in S. enterica is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 S. enterica genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (P-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in Cas3-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing S. enterica strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信