Efflux and uptake transport and gut microbial reactivation of raloxifene glucuronides

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Arttu Uoti, Mika Kurkela, Mikko Niemi, Timo Oksanen, Stefan Oswald, Lauri Puustinen, Heidi Kidron, Noora Sjöstedt
{"title":"Efflux and uptake transport and gut microbial reactivation of raloxifene glucuronides","authors":"Arttu Uoti,&nbsp;Mika Kurkela,&nbsp;Mikko Niemi,&nbsp;Timo Oksanen,&nbsp;Stefan Oswald,&nbsp;Lauri Puustinen,&nbsp;Heidi Kidron,&nbsp;Noora Sjöstedt","doi":"10.1111/bcpt.14107","DOIUrl":null,"url":null,"abstract":"<p>Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail. In this study, we evaluated the interactions of raloxifene and its three glucuronide metabolites (raloxifene 4′-glucuronide, raloxifene 6-glucuronide and raloxifene 4′,6-diglucuronide) with drug transporters using Sf9 membrane vesicles and HEK293 cells. Additionally, we measured the deglucuronidation of raloxifene glucuronides in human faecal extracts. All raloxifene glucuronides were transported by MRP2 and MRP3, whereas raloxifene monoglucuronides were identified as substrates of OATP1B1, OATP1B3 and OATP2B1. All three raloxifene glucuronides were readily deglucuronidated in the presence of faecal extracts, although with high between-subject variability. The results of this study provide further understanding of the disposition of raloxifene, which can help understand the sources behind the interindividual variability in raloxifene pharmacokinetics.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.14107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.14107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail. In this study, we evaluated the interactions of raloxifene and its three glucuronide metabolites (raloxifene 4′-glucuronide, raloxifene 6-glucuronide and raloxifene 4′,6-diglucuronide) with drug transporters using Sf9 membrane vesicles and HEK293 cells. Additionally, we measured the deglucuronidation of raloxifene glucuronides in human faecal extracts. All raloxifene glucuronides were transported by MRP2 and MRP3, whereas raloxifene monoglucuronides were identified as substrates of OATP1B1, OATP1B3 and OATP2B1. All three raloxifene glucuronides were readily deglucuronidated in the presence of faecal extracts, although with high between-subject variability. The results of this study provide further understanding of the disposition of raloxifene, which can help understand the sources behind the interindividual variability in raloxifene pharmacokinetics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信