Yongxin Ji, Jiayu Shang, Jiaojiao Guan, Wei Zou, Herui Liao, Xubo Tang, Yanni Sun
{"title":"PlasGO: enhancing GO-based function prediction for plasmid-encoded proteins based on genetic structure.","authors":"Yongxin Ji, Jiayu Shang, Jiaojiao Guan, Wei Zou, Herui Liao, Xubo Tang, Yanni Sun","doi":"10.1093/gigascience/giae104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plasmid, as a mobile genetic element, plays a pivotal role in facilitating the transfer of traits, such as antimicrobial resistance, among the bacterial community. Annotating plasmid-encoded proteins with the widely used Gene Ontology (GO) vocabulary is a fundamental step in various tasks, including plasmid mobility classification. However, GO prediction for plasmid-encoded proteins faces 2 major challenges: the high diversity of functions and the limited availability of high-quality GO annotations.</p><p><strong>Results: </strong>In this study, we introduce PlasGO, a tool that leverages a hierarchical architecture to predict GO terms for plasmid proteins. PlasGO utilizes a powerful protein language model to learn the local context within protein sentences and a BERT model to capture the global context within plasmid sentences. Additionally, PlasGO allows users to control the precision by incorporating a self-attention confidence weighting mechanism. We rigorously evaluated PlasGO and benchmarked it against 7 state-of-the-art tools in a series of experiments. The experimental results collectively demonstrate that PlasGO has achieved commendable performance. PlasGO significantly expanded the annotations of the plasmid-encoded protein database by assigning high-confidence GO terms to over 95% of previously unannotated proteins, showcasing impressive precision of 0.8229, 0.7941, and 0.8870 for the 3 GO categories, respectively, as measured on the novel protein test set.</p><p><strong>Conclusions: </strong>PlasGO, a hierarchical tool incorporating protein language models and BERT, significantly expanded plasmid protein annotations by predicting high-confidence GO terms. These annotations have been compiled into a database, which will serve as a valuable contribution to downstream plasmid analysis and research.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659980/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plasmid, as a mobile genetic element, plays a pivotal role in facilitating the transfer of traits, such as antimicrobial resistance, among the bacterial community. Annotating plasmid-encoded proteins with the widely used Gene Ontology (GO) vocabulary is a fundamental step in various tasks, including plasmid mobility classification. However, GO prediction for plasmid-encoded proteins faces 2 major challenges: the high diversity of functions and the limited availability of high-quality GO annotations.
Results: In this study, we introduce PlasGO, a tool that leverages a hierarchical architecture to predict GO terms for plasmid proteins. PlasGO utilizes a powerful protein language model to learn the local context within protein sentences and a BERT model to capture the global context within plasmid sentences. Additionally, PlasGO allows users to control the precision by incorporating a self-attention confidence weighting mechanism. We rigorously evaluated PlasGO and benchmarked it against 7 state-of-the-art tools in a series of experiments. The experimental results collectively demonstrate that PlasGO has achieved commendable performance. PlasGO significantly expanded the annotations of the plasmid-encoded protein database by assigning high-confidence GO terms to over 95% of previously unannotated proteins, showcasing impressive precision of 0.8229, 0.7941, and 0.8870 for the 3 GO categories, respectively, as measured on the novel protein test set.
Conclusions: PlasGO, a hierarchical tool incorporating protein language models and BERT, significantly expanded plasmid protein annotations by predicting high-confidence GO terms. These annotations have been compiled into a database, which will serve as a valuable contribution to downstream plasmid analysis and research.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.