Online monitored characterization of Phocaeicola vulgatus for organic acid production using anaerobic microtiter plate cultivations.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Laura Keitel, Benjamin Schick, Gino Pohen, Stanislav Yordanov, Jochen Büchs
{"title":"Online monitored characterization of Phocaeicola vulgatus for organic acid production using anaerobic microtiter plate cultivations.","authors":"Laura Keitel, Benjamin Schick, Gino Pohen, Stanislav Yordanov, Jochen Büchs","doi":"10.1002/btpr.3526","DOIUrl":null,"url":null,"abstract":"<p><p>Phocaeicola vulgatus (formerly Bacteroides vulgatus), an anaerobic gut bacterium, produces several organic acids. Research on P. vulgatus is still in its infancy. However, a detailed understanding of P. vulgatus growth and metabolism is essential for its assessment as an organic acid producer. Media variations, including different initial glucose and NH<sub>4</sub>Cl concentrations and osmolalities, are significant means to yield higher organic acid titers. Furthermore, examining different nitrogen and carbon sources is important to evaluate the potential of P. vulgatus for growth on renewable resources. Cultivations were performed in an in-house built device for anaerobic online-monitoring of fluorescence and scattered light in microtiter plates. Results revealed that the highest organic acid concentrations were reached while using galactose, glucose, or xylose as a carbon source, high osmolalities, and 0.25 g L<sup>-1</sup> NH<sub>4</sub>Cl. In addition, the organic acid composition changed with changing carbon and nitrogen sources. P. vulgatus was successfully further characterized, thereby contributing to a faster characterization of other anaerobic strains and paving the way for anaerobic organic acid production.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3526"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3526","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phocaeicola vulgatus (formerly Bacteroides vulgatus), an anaerobic gut bacterium, produces several organic acids. Research on P. vulgatus is still in its infancy. However, a detailed understanding of P. vulgatus growth and metabolism is essential for its assessment as an organic acid producer. Media variations, including different initial glucose and NH4Cl concentrations and osmolalities, are significant means to yield higher organic acid titers. Furthermore, examining different nitrogen and carbon sources is important to evaluate the potential of P. vulgatus for growth on renewable resources. Cultivations were performed in an in-house built device for anaerobic online-monitoring of fluorescence and scattered light in microtiter plates. Results revealed that the highest organic acid concentrations were reached while using galactose, glucose, or xylose as a carbon source, high osmolalities, and 0.25 g L-1 NH4Cl. In addition, the organic acid composition changed with changing carbon and nitrogen sources. P. vulgatus was successfully further characterized, thereby contributing to a faster characterization of other anaerobic strains and paving the way for anaerobic organic acid production.

利用厌氧微孔板培养在线监测 Phocaeicola vulgatus 生产有机酸的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信