Hydrophilic/hydrophobic heterojunctions for enhanced photocatalytic hydrogen evolution via gas release dynamics.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaoli Fan, Xin Song, Jingxue Sun, Yangpeng Zhang, Zhonghua Li
{"title":"Hydrophilic/hydrophobic heterojunctions for enhanced photocatalytic hydrogen evolution via gas release dynamics.","authors":"Xiaoli Fan, Xin Song, Jingxue Sun, Yangpeng Zhang, Zhonghua Li","doi":"10.1016/j.jcis.2024.12.095","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent-organic frameworks (COFs), characterized by their exceptional light absorption and ordered architecture, have emerged as potential candidates for photocatalytic hydrogen production. In this work, we discovered that the incorporation of fluorine into the sub-nanocavity of azine-linked COF (TF-COF) not only augments its hydrophobicity but also strengthens the interaction between Pt cocatalysts and COFs. In an effort to enhance photocatalytic water splitting efficiency, we integrated the hydrophobic TF-COF with the hydrophilic carbon nitride (CN) to construct a hydrophilic/hydrophobic heterojunction (CTF-x heterojunction). Both experimental results and density functional theory (DFT) calculations reveal that the hydrophilic side, CN, aids in the adsorption and transfer of water molecules, whereas the hydrophobic side, TF-COF, generates hydrogen and promotes its overflow, thereby achieving space charge separation. The hydrogen evolution activity of CTF-50 % (with a CN content of 50 %) reached an optimal value of 2428 μmol g<sup>-1</sup>h<sup>-1</sup><sub>,</sub> with an apparent quantum yield (AQY) of 2.6 % at 400 nm. This is approximately four times higher than that of pure CN and ten times greater than that of TF-COF. We believe this work will provide valuable insights for developing efficient heterojunction photocatalysts.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"531-541"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent-organic frameworks (COFs), characterized by their exceptional light absorption and ordered architecture, have emerged as potential candidates for photocatalytic hydrogen production. In this work, we discovered that the incorporation of fluorine into the sub-nanocavity of azine-linked COF (TF-COF) not only augments its hydrophobicity but also strengthens the interaction between Pt cocatalysts and COFs. In an effort to enhance photocatalytic water splitting efficiency, we integrated the hydrophobic TF-COF with the hydrophilic carbon nitride (CN) to construct a hydrophilic/hydrophobic heterojunction (CTF-x heterojunction). Both experimental results and density functional theory (DFT) calculations reveal that the hydrophilic side, CN, aids in the adsorption and transfer of water molecules, whereas the hydrophobic side, TF-COF, generates hydrogen and promotes its overflow, thereby achieving space charge separation. The hydrogen evolution activity of CTF-50 % (with a CN content of 50 %) reached an optimal value of 2428 μmol g-1h-1, with an apparent quantum yield (AQY) of 2.6 % at 400 nm. This is approximately four times higher than that of pure CN and ten times greater than that of TF-COF. We believe this work will provide valuable insights for developing efficient heterojunction photocatalysts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信