AuI-incorporated metal-organic frameworks nanozymes for thioreduction and glutathione depletion-mediated efficient photoimmunotherapy.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Bingjie Liu, Xue Wang, Xiaoxi Chen, Shuangya Li, Binghua Jiang, Wei Jiang, Rui Li, Zhenzhen Yang, Kangsheng Tu
{"title":"Au<sup>I</sup>-incorporated metal-organic frameworks nanozymes for thioreduction and glutathione depletion-mediated efficient photoimmunotherapy.","authors":"Bingjie Liu, Xue Wang, Xiaoxi Chen, Shuangya Li, Binghua Jiang, Wei Jiang, Rui Li, Zhenzhen Yang, Kangsheng Tu","doi":"10.1016/j.jcis.2024.12.057","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor therapy has historically been a global research focus, with phototherapy garnered significant attention as a innovative treatment modality. However, the antioxidant defense system in the tumor microenvironment, characterized by excessive glutathione (GSH) and thiol-containing proteins, often limits the effectiveness of photodynamic therapy. In this study, we report the development of a new multifunctional integrated nanozyme with thioredoxin reductase-oxidase (TrxRox) and GSH-oxidase (GSHox)-like activities. This nanozyme, termed Au<sup>I</sup>-incorporated MOFs, was synthesized by embedding monovalent Au nanozymes into a light-sensitive metal-organic framework (MOFs) structure using an in-situ oxidation-reduction method. The intergrated Au<sup>I</sup> nanozyme exhibited inhibitory effects on TrxR and presented significant anti-tumor properties. Moreover, the integrated nanozyme also demonstrates peroxidase-like activity, catalyzing the decomposition of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) into hydroxyl radicals (•OH). Additionally, this nanomedicine effectively depletes existing GSH and TrxR, thereby enhancing the efficacy of photodynamic and photothermal therapy. Notably, under light conditions, this nanozyme induces oxidative stress within cells, leading to apoptosis and necrosis of tumor cells. Of note, it triggers immunogenic cell death and activating antigen-presenting cells to convert cold tumors into hot tumors. Therefore, Au<sup>I</sup>-incorporated MOFs nanozyme demonstrates promising potential in photoimmunotherapy, offering new insights and strategies for tumor therapy.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"552-563"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor therapy has historically been a global research focus, with phototherapy garnered significant attention as a innovative treatment modality. However, the antioxidant defense system in the tumor microenvironment, characterized by excessive glutathione (GSH) and thiol-containing proteins, often limits the effectiveness of photodynamic therapy. In this study, we report the development of a new multifunctional integrated nanozyme with thioredoxin reductase-oxidase (TrxRox) and GSH-oxidase (GSHox)-like activities. This nanozyme, termed AuI-incorporated MOFs, was synthesized by embedding monovalent Au nanozymes into a light-sensitive metal-organic framework (MOFs) structure using an in-situ oxidation-reduction method. The intergrated AuI nanozyme exhibited inhibitory effects on TrxR and presented significant anti-tumor properties. Moreover, the integrated nanozyme also demonstrates peroxidase-like activity, catalyzing the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, this nanomedicine effectively depletes existing GSH and TrxR, thereby enhancing the efficacy of photodynamic and photothermal therapy. Notably, under light conditions, this nanozyme induces oxidative stress within cells, leading to apoptosis and necrosis of tumor cells. Of note, it triggers immunogenic cell death and activating antigen-presenting cells to convert cold tumors into hot tumors. Therefore, AuI-incorporated MOFs nanozyme demonstrates promising potential in photoimmunotherapy, offering new insights and strategies for tumor therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信