Andrew M Fadgen, Nicholas A Pizzi, Rodney J Wigent, Preston B Moore
{"title":"Computational Method for Determining the Excess Chemical Potential Using Liquid-Vapor Phase Coexistence Simulations.","authors":"Andrew M Fadgen, Nicholas A Pizzi, Rodney J Wigent, Preston B Moore","doi":"10.1021/acs.jpcb.4c07206","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular dynamics simulations are a powerful tool for probing and understanding the theoretical aspects of chemical systems and solutions. Our research introduces a novel method for determining the excess chemical potential of non-ideal solutions by leveraging the equivalence between the chemical potential of the vapor phase and liquid phase. Traditional approaches have relied on bulk simulations and the integration of pair distribution functions (<i>g</i>(<i>r</i>)), which are computationally intensive to obtain accurate results. In contrast, our method utilizes a liquid-gas system, where determining the vapor pressure allows for a quick and accurate calculation of the excess chemical potential relative to a reference system, e.g., pure solvent. This approach significantly reduces computational effort while maintaining high accuracy and precision. We demonstrate the effectiveness of this method using a simplified Lennard-Jones model, although the method is broadly applicable to a wide range of systems, including those with complex interactions, varying concentrations, and different temperatures. The reduced computational demands and versatility of our approach make it a valuable tool for studying non-ideal solutions, including ionic solutions in molecular simulations.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics simulations are a powerful tool for probing and understanding the theoretical aspects of chemical systems and solutions. Our research introduces a novel method for determining the excess chemical potential of non-ideal solutions by leveraging the equivalence between the chemical potential of the vapor phase and liquid phase. Traditional approaches have relied on bulk simulations and the integration of pair distribution functions (g(r)), which are computationally intensive to obtain accurate results. In contrast, our method utilizes a liquid-gas system, where determining the vapor pressure allows for a quick and accurate calculation of the excess chemical potential relative to a reference system, e.g., pure solvent. This approach significantly reduces computational effort while maintaining high accuracy and precision. We demonstrate the effectiveness of this method using a simplified Lennard-Jones model, although the method is broadly applicable to a wide range of systems, including those with complex interactions, varying concentrations, and different temperatures. The reduced computational demands and versatility of our approach make it a valuable tool for studying non-ideal solutions, including ionic solutions in molecular simulations.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.