Boosting of the piezoelectric photocatalytic performance of Bi2MoO6 by Fe3+ doping and construction S-scheme heterojunction using WO3.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jiamin Li, Changheng Chen, Jiangwen Bai, Yuehui Jin, Chongfeng Guo
{"title":"Boosting of the piezoelectric photocatalytic performance of Bi<sub>2</sub>MoO<sub>6</sub> by Fe<sup>3+</sup> doping and construction S-scheme heterojunction using WO<sub>3</sub>.","authors":"Jiamin Li, Changheng Chen, Jiangwen Bai, Yuehui Jin, Chongfeng Guo","doi":"10.1016/j.jcis.2024.12.086","DOIUrl":null,"url":null,"abstract":"<p><p>Although self-polarized piezoelectric semiconductor photocatalysts significantly enhance the separation of internally generated photocarriers, their photocatalytic performance is constrained by insufficient internal polarisation and a wide bandgap. Additionally, the low concentration of oxygen in contaminated water limits the effectiveness of such photocatalysts. To the best of our knowledge, this study was the first to determine that the piezoelectric properties of Bi<sub>2</sub>MoO<sub>6</sub> (BMO), was due to the polarisation displacement of the MoO<sub>6</sub> octahedron that occurred along the x-axis, as revealed through density functional theory (DFT) calculations. Subsequently, the self-polarisation characteristics of BMO were enhanced and the bandgap was reduced through Fe<sup>3+</sup> doping, as confirmed via atomic force microscopy, hysteresis loop measurements and DFT analysis, resulting in an increase in surface potential from 30.41 to 46.80 mV. Furthermore, an S-scheme WO<sub>3</sub>/Bi<sub>2</sub>MoO<sub>6</sub>:Fe<sup>3+</sup> heterojunction was developed to improve the surface separation of photoelectron-hole pairs. The piezoelectric photocatalytic performance of this sample was evaluated through the degradation of rhodamine B (RhB) and oxygen generation. Results indicated that the degradation rate of RhB reached 98.63 % within 25 min under the synergistic influence of light and ultrasound, which was 1.85 and 9.60 times higher than those of Bi<sub>2</sub>MoO<sub>6</sub> and WO<sub>3</sub>, respectively. Furthermore, the optimal oxygen production efficiency was 167.41 µmol·g<sup>-1</sup>·h<sup>-1</sup>. This study provides a novel approach for designing more efficient piezoelectric photocatalysts.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"574-584"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although self-polarized piezoelectric semiconductor photocatalysts significantly enhance the separation of internally generated photocarriers, their photocatalytic performance is constrained by insufficient internal polarisation and a wide bandgap. Additionally, the low concentration of oxygen in contaminated water limits the effectiveness of such photocatalysts. To the best of our knowledge, this study was the first to determine that the piezoelectric properties of Bi2MoO6 (BMO), was due to the polarisation displacement of the MoO6 octahedron that occurred along the x-axis, as revealed through density functional theory (DFT) calculations. Subsequently, the self-polarisation characteristics of BMO were enhanced and the bandgap was reduced through Fe3+ doping, as confirmed via atomic force microscopy, hysteresis loop measurements and DFT analysis, resulting in an increase in surface potential from 30.41 to 46.80 mV. Furthermore, an S-scheme WO3/Bi2MoO6:Fe3+ heterojunction was developed to improve the surface separation of photoelectron-hole pairs. The piezoelectric photocatalytic performance of this sample was evaluated through the degradation of rhodamine B (RhB) and oxygen generation. Results indicated that the degradation rate of RhB reached 98.63 % within 25 min under the synergistic influence of light and ultrasound, which was 1.85 and 9.60 times higher than those of Bi2MoO6 and WO3, respectively. Furthermore, the optimal oxygen production efficiency was 167.41 µmol·g-1·h-1. This study provides a novel approach for designing more efficient piezoelectric photocatalysts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信