Simulation and assimilation of the digital human brain

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wenlian Lu, Xin Du, Jiexiang Wang, Longbin Zeng, Leijun Ye, Shitong Xiang, Qibao Zheng, Jie Zhang, Ningsheng Xu, Jianfeng Feng, the DTB Consortium
{"title":"Simulation and assimilation of the digital human brain","authors":"Wenlian Lu, Xin Du, Jiexiang Wang, Longbin Zeng, Leijun Ye, Shitong Xiang, Qibao Zheng, Jie Zhang, Ningsheng Xu, Jianfeng Feng, the DTB Consortium","doi":"10.1038/s43588-024-00731-3","DOIUrl":null,"url":null,"abstract":"Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications. The Digital Brain platform is capable of simulating spiking neuronal networks at the neuronal scale of the human brain. The platform is used to reproduce blood-oxygen-level-dependent signals in both the resting state and action, thereby predicting the visual evaluation scores.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"890-898"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00731-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications. The Digital Brain platform is capable of simulating spiking neuronal networks at the neuronal scale of the human brain. The platform is used to reproduce blood-oxygen-level-dependent signals in both the resting state and action, thereby predicting the visual evaluation scores.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信