Driving range estimation for electric bus based on atomic orbital search and back propagation neural network

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanchen Ke, Jun Bi, Yongxing Wang, Yu Zhang
{"title":"Driving range estimation for electric bus based on atomic orbital search and back propagation neural network","authors":"Hanchen Ke,&nbsp;Jun Bi,&nbsp;Yongxing Wang,&nbsp;Yu Zhang","doi":"10.1049/itr2.12592","DOIUrl":null,"url":null,"abstract":"<p>As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2884-2895"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12592","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12592","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信