Erkut Akdag, Giacomo D'Amicantonio, Julien Vijverberg, David Stajan, Bart Beers, Peter H. N. De With, Egor Bondarev
{"title":"Geo-spatial traffic behaviour analysis and anomaly detection for ITS applications","authors":"Erkut Akdag, Giacomo D'Amicantonio, Julien Vijverberg, David Stajan, Bart Beers, Peter H. N. De With, Egor Bondarev","doi":"10.1049/itr2.12591","DOIUrl":null,"url":null,"abstract":"<p>Understanding the behaviour of traffic participants within the geo-spatial context of road/intersection topology is a vital prerequisite for any smart ITS application. This article presents a video-based traffic analysis and anomaly detection system covering the complete data processing pipeline, including sensor data acquisition, analysis, and digital twin reconstruction. The system solves the challenge of geo-spatial mapping of captured visual data onto the road/intersection topology by semantic analysis of aerial data. Additionally, the automated camera calibration component enables instant camera pose estimation to map traffic agents onto the road/intersection surface accurately. A novel aspect is approaching the anomaly detection problem by AI analysis of both the spatio-temporal visual clues and the geo-spatial trajectories for all type of traffic participants, such as pedestrians, bicyclists, and vehicles. This enables recognition of anomalies related to either traffic-rule violations, for example, jaywalking, improper turns, zig-zag driving, unlawful stops, or behavioural anomalies: littering, accidents, falling, vandalism, violence, infrastructure collapse etc. The method achieves leading anomaly detection results on benchmark datasets World Cup 2014, UCF-Crime, XD-Violence, and ShanghaiTech. All the obtained results are streamed and rendered in real-time by the developed TGX digital twin visualizer. The complete system has been deployed and validated on the roads of Helmond town in The Netherlands.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2939-2962"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12591","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the behaviour of traffic participants within the geo-spatial context of road/intersection topology is a vital prerequisite for any smart ITS application. This article presents a video-based traffic analysis and anomaly detection system covering the complete data processing pipeline, including sensor data acquisition, analysis, and digital twin reconstruction. The system solves the challenge of geo-spatial mapping of captured visual data onto the road/intersection topology by semantic analysis of aerial data. Additionally, the automated camera calibration component enables instant camera pose estimation to map traffic agents onto the road/intersection surface accurately. A novel aspect is approaching the anomaly detection problem by AI analysis of both the spatio-temporal visual clues and the geo-spatial trajectories for all type of traffic participants, such as pedestrians, bicyclists, and vehicles. This enables recognition of anomalies related to either traffic-rule violations, for example, jaywalking, improper turns, zig-zag driving, unlawful stops, or behavioural anomalies: littering, accidents, falling, vandalism, violence, infrastructure collapse etc. The method achieves leading anomaly detection results on benchmark datasets World Cup 2014, UCF-Crime, XD-Violence, and ShanghaiTech. All the obtained results are streamed and rendered in real-time by the developed TGX digital twin visualizer. The complete system has been deployed and validated on the roads of Helmond town in The Netherlands.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf