First-Principles Molecular Dynamics Study on Reductive Stability of High Concentration Electrolyte on Zn Doped Cu Current Collector Surface

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-09-21 DOI:10.1002/cnma.202400364
Santhanamoorthi Nachimuthu, Yuan-Yu Wang, Shih-Huang Pan, Jyh-Chiang Jiang
{"title":"First-Principles Molecular Dynamics Study on Reductive Stability of High Concentration Electrolyte on Zn Doped Cu Current Collector Surface","authors":"Santhanamoorthi Nachimuthu,&nbsp;Yuan-Yu Wang,&nbsp;Shih-Huang Pan,&nbsp;Jyh-Chiang Jiang","doi":"10.1002/cnma.202400364","DOIUrl":null,"url":null,"abstract":"<p>In enhancing the lifespan of anode-free Li metal batteries (AFLMBs), current collector (CC) engineering is crucial for achieving uniform and dendrite-free lithium deposition. The commonly used copper (Cu) CC is unsatisfactory because of its poor lithiophilicity. Here, we consider Zn doping on the Cu CC surface (Zn−Cu) and explore the reductive stability of a high-concentration electrolyte (HCE), consisting of 3.6 M Lithium Hexafluorophosphate (LiPF<sub>6</sub>) salt in a mixture of ethylene carbonate (EC) and diethylcarbonate (DEC), on the Zn−Cu (111) surface (HCE|Zn−Cu) using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The interfacial reactions in the HCE|Zn−Cu system are compared to those on the pristine Cu (111) surface (HCE|Cu). We have also studied the effect of electron-rich environments on the decomposition mechanism of the HCE mixture on both the CC surfaces. It is found that the HCE mixture is electrochemically stable on both Cu and Zn−Cu surfaces in a neutral environment. However, under electron-rich conditions, only one DEC molecule has decomposed upon contact with the Cu CC surface, while the two PF<sub>6</sub><sup>−</sup> anion groups from Li salts have decomposed much faster (within 100 fs) when the HCE mixture interacts with the Zn−Cu surface. Our results indicate that Zn doping suppresses undesirable solvent decomposition and improves the quality of the solid electrolyte interphase (SEI) layer.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400364","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In enhancing the lifespan of anode-free Li metal batteries (AFLMBs), current collector (CC) engineering is crucial for achieving uniform and dendrite-free lithium deposition. The commonly used copper (Cu) CC is unsatisfactory because of its poor lithiophilicity. Here, we consider Zn doping on the Cu CC surface (Zn−Cu) and explore the reductive stability of a high-concentration electrolyte (HCE), consisting of 3.6 M Lithium Hexafluorophosphate (LiPF6) salt in a mixture of ethylene carbonate (EC) and diethylcarbonate (DEC), on the Zn−Cu (111) surface (HCE|Zn−Cu) using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The interfacial reactions in the HCE|Zn−Cu system are compared to those on the pristine Cu (111) surface (HCE|Cu). We have also studied the effect of electron-rich environments on the decomposition mechanism of the HCE mixture on both the CC surfaces. It is found that the HCE mixture is electrochemically stable on both Cu and Zn−Cu surfaces in a neutral environment. However, under electron-rich conditions, only one DEC molecule has decomposed upon contact with the Cu CC surface, while the two PF6 anion groups from Li salts have decomposed much faster (within 100 fs) when the HCE mixture interacts with the Zn−Cu surface. Our results indicate that Zn doping suppresses undesirable solvent decomposition and improves the quality of the solid electrolyte interphase (SEI) layer.

Abstract Image

高浓度电解质在Zn掺杂Cu集电极表面还原稳定性的第一性原理分子动力学研究
为了提高无阳极锂金属电池(aflmb)的寿命,集流器(CC)工程是实现均匀和无枝晶锂沉积的关键。常用的铜(Cu) CC因其亲石性差而不能令人满意。本文采用密度泛函理论(DFT)和从头算分子动力学(AIMD)模拟,研究了在Cu CC表面(Zn−Cu)掺杂Zn,并探讨了由3.6 M六氟磷酸锂(LiPF6)盐在碳酸乙烯(EC)和碳酸二乙酯(DEC)混合物中组成的高浓度电解质(HCE)在Zn−Cu(111)表面(HCE|Zn−Cu)的还原稳定性。将HCE|Zn−Cu体系中的界面反应与原始Cu(111)表面(HCE|Cu)的界面反应进行了比较。我们还研究了富电子环境对HCE混合物在CC表面分解机理的影响。在中性环境下,HCE混合物在Cu和Zn−Cu表面均具有稳定的电化学性能。然而,在富电子条件下,只有一个DEC分子在与Cu CC表面接触时分解,而当HCE混合物与Zn−Cu表面相互作用时,Li盐中的两个PF6−阴离子基团的分解速度要快得多(在100 fs内)。结果表明,锌的掺杂抑制了不良的溶剂分解,提高了固体电解质界面层的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信