{"title":"Navigating uncertainty with cybernetics principles: A scoping review of interdisciplinary resilience strategies for rail systems","authors":"Corneliu Cotet, Peter Kawalek, Thomas Jackson","doi":"10.1049/itr2.12598","DOIUrl":null,"url":null,"abstract":"<p>Common difficulties across industries are discovered in data management, where handling the volume, variety, and quality of data is crucial for informed decisions in uncertain environments. In this context, rail management must navigate complex decision-making to ensure safety, service continuity, and cost-effectiveness. The 2020 Stonehaven derailment is an example of the increasing vulnerability of rail infrastructure to environmental factors and systemic failures. It emphasizes the need for resilient systems, proficient at preventative maintenance and adaptable to escalating challenges. These matters further accentuate the need for context-dependent strategies that bridge theoretical insights and practical applications. This scoping review explores strategies for decision-making under uncertainty across sectors such as civil infrastructure, agriculture, water management, and emergency response. It unfolds a selection of procedures addressing the impacts of extreme weather and other unexpected disruptions. It also sets a foundation for future research to support rail infrastructure adaptation to climate change by advocating the use of cybernetic principles and artificial intelligence (AI) to enhance decision-making processes. Cybernetics enables collaborative human-AI methods, improving adaptability and resilience. However, balancing and incorporating diverse stakeholder viewpoints into decision chains remains difficult. While promising, substantial research and system improvements are needed to fully harness the potential of AI.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2814-2826"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12598","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12598","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Common difficulties across industries are discovered in data management, where handling the volume, variety, and quality of data is crucial for informed decisions in uncertain environments. In this context, rail management must navigate complex decision-making to ensure safety, service continuity, and cost-effectiveness. The 2020 Stonehaven derailment is an example of the increasing vulnerability of rail infrastructure to environmental factors and systemic failures. It emphasizes the need for resilient systems, proficient at preventative maintenance and adaptable to escalating challenges. These matters further accentuate the need for context-dependent strategies that bridge theoretical insights and practical applications. This scoping review explores strategies for decision-making under uncertainty across sectors such as civil infrastructure, agriculture, water management, and emergency response. It unfolds a selection of procedures addressing the impacts of extreme weather and other unexpected disruptions. It also sets a foundation for future research to support rail infrastructure adaptation to climate change by advocating the use of cybernetic principles and artificial intelligence (AI) to enhance decision-making processes. Cybernetics enables collaborative human-AI methods, improving adaptability and resilience. However, balancing and incorporating diverse stakeholder viewpoints into decision chains remains difficult. While promising, substantial research and system improvements are needed to fully harness the potential of AI.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf