Sujit Biswas, Kashif Sharif, Zohaib Latif, Mohammed J. F. Alenazi, Ashok Kumar Pradhan, Anupam Kumar Bairagi
{"title":"Blockchain controlled trustworthy federated learning platform for smart homes","authors":"Sujit Biswas, Kashif Sharif, Zohaib Latif, Mohammed J. F. Alenazi, Ashok Kumar Pradhan, Anupam Kumar Bairagi","doi":"10.1049/cmu2.12870","DOIUrl":null,"url":null,"abstract":"<p>Smart device manufacturers rely on insights from smart home (SH) data to update their devices, and similarly, service providers use it for predictive maintenance. In terms of data security and privacy, combining distributed federated learning (FL) with blockchain technology is being considered to prevent single point failure and model poising attacks. However, adding blockchain to a FL environment can worsen blockchain's scaling issues and create regular service interruptions at SH. This article presents a scalable Blockchain-based Privacy-preserving Federated Learning (BPFL) architecture for an SH ecosystem that integrates blockchain and FL. BPFL can automate SHs' services and distribute machine learning (ML) operations to update IoT manufacturer models and scale service provider services. The architecture uses a local peer as a gateway to connect SHs to the blockchain network and safeguard user data, transactions, and ML operations. Blockchain facilitates ecosystem access management and learning. The Stanford Cars and an IoT dataset have been used as test bed experiments, taking into account the nature of data (i.e. images and numeric). The experiments show that ledger optimisation can boost scalability by 40–60% in BCN by reducing transaction overhead by 60%. Simultaneously, it increases learning capacity by 10% compared to baseline FL techniques.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 20","pages":"1840-1852"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12870","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12870","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Smart device manufacturers rely on insights from smart home (SH) data to update their devices, and similarly, service providers use it for predictive maintenance. In terms of data security and privacy, combining distributed federated learning (FL) with blockchain technology is being considered to prevent single point failure and model poising attacks. However, adding blockchain to a FL environment can worsen blockchain's scaling issues and create regular service interruptions at SH. This article presents a scalable Blockchain-based Privacy-preserving Federated Learning (BPFL) architecture for an SH ecosystem that integrates blockchain and FL. BPFL can automate SHs' services and distribute machine learning (ML) operations to update IoT manufacturer models and scale service provider services. The architecture uses a local peer as a gateway to connect SHs to the blockchain network and safeguard user data, transactions, and ML operations. Blockchain facilitates ecosystem access management and learning. The Stanford Cars and an IoT dataset have been used as test bed experiments, taking into account the nature of data (i.e. images and numeric). The experiments show that ledger optimisation can boost scalability by 40–60% in BCN by reducing transaction overhead by 60%. Simultaneously, it increases learning capacity by 10% compared to baseline FL techniques.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf