{"title":"A spatiotemporal learning approach to safety-oriented individualized driving risk assessment in a vehicle-to-everything (V2X) environment","authors":"Jing Li, Xuantong Wang, Tong Zhang","doi":"10.1049/itr2.12584","DOIUrl":null,"url":null,"abstract":"<p>Advances in real-time basic safety message (BSM) data from sensor-equipped vehicles have created new opportunities for driving risk assessments. This paper presents a machine learning approach using BSM data to provide fine-grained risk assessments, focusing on safety-critical events (SCEs) related to driving profiles, vehicle states, and road conditions. This approach formulates a bi-level risk indicator: one level measures the observable frequency of SCEs, while the other estimates their likelihood. The coarse level calculates risk scores by classifying driving profiles as normal or risky based on SCE frequency. The fine level refines these scores by comparing normal and risky profiles using key features from a feature learning model. This combined system accounts for recent driving behaviours and road/weather conditions within a vehicle-to-everything (V2X) environment, addressing high data dimensionality and imbalance. A comprehensive case study using 1 year of data from pilot V2X infrastructure in Tampa, Florida, demonstrates the efficacy of this approach, showing practical applications of the SCE-based risk indicator and combinatorial feature learning while also highlighting the real-world utility of the assessment method in providing a detailed and actionable view of driving risk based on V2X information.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2459-2484"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12584","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in real-time basic safety message (BSM) data from sensor-equipped vehicles have created new opportunities for driving risk assessments. This paper presents a machine learning approach using BSM data to provide fine-grained risk assessments, focusing on safety-critical events (SCEs) related to driving profiles, vehicle states, and road conditions. This approach formulates a bi-level risk indicator: one level measures the observable frequency of SCEs, while the other estimates their likelihood. The coarse level calculates risk scores by classifying driving profiles as normal or risky based on SCE frequency. The fine level refines these scores by comparing normal and risky profiles using key features from a feature learning model. This combined system accounts for recent driving behaviours and road/weather conditions within a vehicle-to-everything (V2X) environment, addressing high data dimensionality and imbalance. A comprehensive case study using 1 year of data from pilot V2X infrastructure in Tampa, Florida, demonstrates the efficacy of this approach, showing practical applications of the SCE-based risk indicator and combinatorial feature learning while also highlighting the real-world utility of the assessment method in providing a detailed and actionable view of driving risk based on V2X information.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf