pH: A major player in degenerative intervertebral disks

IF 3.4 3区 医学 Q1 ORTHOPEDICS
JOR Spine Pub Date : 2024-12-18 DOI:10.1002/jsp2.70025
Matthew A. R. Trone, Joshua D. Stover, Alejandro Almarza, Robert D. Bowles
{"title":"pH: A major player in degenerative intervertebral disks","authors":"Matthew A. R. Trone,&nbsp;Joshua D. Stover,&nbsp;Alejandro Almarza,&nbsp;Robert D. Bowles","doi":"10.1002/jsp2.70025","DOIUrl":null,"url":null,"abstract":"<p>Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.</p>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"7 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsp2.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.70025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
JOR Spine
JOR Spine ORTHOPEDICS-
CiteScore
6.40
自引率
18.90%
发文量
42
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信