{"title":"Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning","authors":"Wei Hao, Huaping Liu, Jia Liu, Wenjie Li, Lijun Chen","doi":"10.1049/sil2/7719848","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Tacit understanding refers to the ability of team members to work together seamlessly and intuitively without explicitly communicating in detail. This ability is crucial for effective teamwork in complex situations that involve both manned and unmanned aerial vehicles (UAVs). Existing collaborative tasks between manned and unmanned aircraft focus mainly on optimizing communication and the UAVs’ flight paths but neglect the benefits of tacit and intelligent operational cooperation with pilots. To address this limitation, we propose a tacit collaborative attack method that utilizes the UAVs’ capacity for tacit understanding to infer human intent and select the appropriate targets for collaborative attack missions. A learning framework incorporating intention prediction and reinforcement learning paradigms is developed to teach the UAV to generate corresponding collaborative attack actions. Finally, we present results from extensive simulation experiments in a homemade game environment to demonstrate the efficiency and scalability of our method within the proposed framework. The video can be found at https://www.youtube.com/watch?v=CjXhkD7ko14.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/7719848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2/7719848","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tacit understanding refers to the ability of team members to work together seamlessly and intuitively without explicitly communicating in detail. This ability is crucial for effective teamwork in complex situations that involve both manned and unmanned aerial vehicles (UAVs). Existing collaborative tasks between manned and unmanned aircraft focus mainly on optimizing communication and the UAVs’ flight paths but neglect the benefits of tacit and intelligent operational cooperation with pilots. To address this limitation, we propose a tacit collaborative attack method that utilizes the UAVs’ capacity for tacit understanding to infer human intent and select the appropriate targets for collaborative attack missions. A learning framework incorporating intention prediction and reinforcement learning paradigms is developed to teach the UAV to generate corresponding collaborative attack actions. Finally, we present results from extensive simulation experiments in a homemade game environment to demonstrate the efficiency and scalability of our method within the proposed framework. The video can be found at https://www.youtube.com/watch?v=CjXhkD7ko14.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf