Integrative single-cell RNA-seq and ATAC-seq analysis of the evolutionary trajectory features of adipose-derived stem cells induced into astrocytes

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qingxi Long, Yi Yuan, Ya Ou, Wen Li, Qi Yan, Pingshu Zhang, Xiaodong Yuan
{"title":"Integrative single-cell RNA-seq and ATAC-seq analysis of the evolutionary trajectory features of adipose-derived stem cells induced into astrocytes","authors":"Qingxi Long,&nbsp;Yi Yuan,&nbsp;Ya Ou,&nbsp;Wen Li,&nbsp;Qi Yan,&nbsp;Pingshu Zhang,&nbsp;Xiaodong Yuan","doi":"10.1111/jnc.16269","DOIUrl":null,"url":null,"abstract":"<p>This study employs single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing technologies (scATAC-seq) to perform joint sequencing on cells at various time points during the induction of adipose-derived stem cells (ADSCs) into astrocytes. We applied bioinformatics approaches to investigate the differentiation trajectories of ADSCs during their induced differentiation into astrocytes. Pseudotemporal analysis was used to infer differentiation trajectories. Additionally, we assessed chromatin accessibility patterns during the differentiation process. Key transcription factors driving the differentiation of ADSCs into astrocytes were identified using motif and footprint methods. Our analysis revealed significant shifts in gene expression during the induction process, with astrocyte-related genes upregulated and stem cell-related genes downregulated. ADSCs first differentiated into neural stem cell-like cells with high plasticity, which further matured into astrocytes via two distinct pathways. Marked changes in chromatin accessibility were observed during ADSC-induced differentiation, affecting transcription regulation and cell function. Transcription factors analysis identified NFIA/B/C/X and CEBPA/B/D as key regulators in ADSCs differentiation into astrocytes. We observed a correlation between chromatin accessibility and gene expression, with ADSCs exhibiting broad chromatin accessibility prior to lineage commitment, where chromatin opening precedes transcription initiation. In summary, we found that ADSCs first enter a neural stem cell-like state before differentiating into astrocytes. ADSCs also display extensive chromatin accessibility prior to astrocyte differentiation, although transcription has not yet been initiated. These findings offer a theoretical framework for understanding the molecular mechanisms underlying this process.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing technologies (scATAC-seq) to perform joint sequencing on cells at various time points during the induction of adipose-derived stem cells (ADSCs) into astrocytes. We applied bioinformatics approaches to investigate the differentiation trajectories of ADSCs during their induced differentiation into astrocytes. Pseudotemporal analysis was used to infer differentiation trajectories. Additionally, we assessed chromatin accessibility patterns during the differentiation process. Key transcription factors driving the differentiation of ADSCs into astrocytes were identified using motif and footprint methods. Our analysis revealed significant shifts in gene expression during the induction process, with astrocyte-related genes upregulated and stem cell-related genes downregulated. ADSCs first differentiated into neural stem cell-like cells with high plasticity, which further matured into astrocytes via two distinct pathways. Marked changes in chromatin accessibility were observed during ADSC-induced differentiation, affecting transcription regulation and cell function. Transcription factors analysis identified NFIA/B/C/X and CEBPA/B/D as key regulators in ADSCs differentiation into astrocytes. We observed a correlation between chromatin accessibility and gene expression, with ADSCs exhibiting broad chromatin accessibility prior to lineage commitment, where chromatin opening precedes transcription initiation. In summary, we found that ADSCs first enter a neural stem cell-like state before differentiating into astrocytes. ADSCs also display extensive chromatin accessibility prior to astrocyte differentiation, although transcription has not yet been initiated. These findings offer a theoretical framework for understanding the molecular mechanisms underlying this process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信